Potential role of organic sulfur compounds from Allium species in cancer prevention and therapy

  • C. Scherer
  • C. Jacob
  • M. Dicato
  • M. DiederichEmail author


Phytochemical research has revealed that organic sulfur-containing compounds (OSCs) from Allium species exert biological effects, that might be beneficial in the treatment or prevention of a range of diseases, such as infections, cardiovascular and metabolic affections, cancers and related indispositions. Focusing physiological activities of these compounds in the context of cancer, it became clear from both epidemiological studies in men and experimental studies in diverse models, that the OSCs have a strong potential to prevent or to treat cancers even with selectivity against non-neoplastic cells. Though underlying mechanisms are not yet fully understood, several parts of their modes and mechanisms of action were elucidated: Pivotal molecular targets of as well chemoprevention as chemotherapy are metabolic, transporter or repair enzymes strongly affecting cell death, proliferation and formation of metastases. Accordingly effects are not restricted to the run of cell death programs, but they moreover comprise the strongly interdepending immune and inflammatory systems. Respectively, several hypotheses exist which are based on chemical properties of sulfur as the “pharmacophor” of the compounds appearing in up to ten different oxidation states (−2 to +6). Hence compounds can undergo redox-reactions and electrostatic interactions, making reactive oxygen species (ROS) a key feature of their mechanisms of action.


Organic sulfur compounds from Allium species Chemoprevention Chemotherapy Modes and mechanisms of action 



(Aged) garlic extract


Agency for Healthcare Research and Quality


Member of the protein kinase B-family


Acute myeloid leukemia


Allyl methyl sulfide


MATS allyl methyl trisulfide


Anti-oxidant response element


Ataxia-telangiectasia mutated and Rad3 related


B-cell lymphoma 2


Benign prostatic hyperplasia


Cyclin dependent kinase1


Checkpoint kinase1




Cytochrome P450


Diallyl disulfide


Diallyl sulfide


Diallyl trisulfide


Diallyl tetrasulfide


Dimethyl trisulfide


Dipropyl disulfide


Dipropyl sulfide


Dipropyl trisulfide


Dipropyl tetrasulfide


Human prostate cancer cells


Extracellular signal-regulated kinases


Erythroblastosis virus E26 oncogene homolog 1


γ-Glutamylcysteine synthetase


Garlic (powder) extract


Garlic oil


Garlic powder




Histone deacetylase


Human embryonic kidney cells


Hypoxia-inducible factors


Human leukemia cells


Heme oxygenase 1


Human umbilical vein endothelial cells


Inhibitor of apoptosis protein family


Intercellular adhesion molecule




Inducible nitric oxide synthase


c-Jun-terminal kinases


Low density proteins




Mitogen-activated protein kinases


Multidrug resistance


National Cancer Institute


Nuclear factor kappa B


Natural killer cells




NAD(P)H:quinone oxidoreductase 1


Nuclear factor E2-related factor 2


Onion oil


Organic sulfur compound(s)


Tumor suppressor protein (mass 53 kDa)


Peripheral blood mononuclear cells


Human prostate cancer cells


Glycoprotein P




Propyl methyl sulfide


Quinone reductase




Reactive nitrogen species


Reactive oxygen species


S-Allyl cysteine


S-Allyl mercaptocysteine


Human neuroblastoma cells


Superoxide dismutase


Human colon adenocarcinoma cells


Tumor necrosis factor


United Kingdom


Vascular endothelial growth factor



CS thanks the “Ministère de la Culture, de l’Enseignement supérieur et de la Recherche of Luxembourg” for financial support by providing a “Bourse de formation-recherche”. Moreover researchers are indebted to “Télévie”, the “Fondation de Recherche Cancer et Sang” and “Recherches Scientifiques” Luxembourg association. Likewise the authors thank “Een Häerz fir Kriibskrank Kanner” association, the Action Lions “Vaincre le Cancer”, the Foundation for Scientific Cooperation between Germany and Luxemburg, and the Saarland University for additional support.


  1. Agarwal KC (1996) Therapeutic actions of garlic constituents. Med Res Rev 16:111–124. doi: 10.1002/(SICI)1098-1128(199601)16:1<111::AID-MED4>3.0.CO;2-5 PubMedGoogle Scholar
  2. Agarwal MK, Iqbal M, Athar M (2007) Garlic oil ameliorates ferric nitrilotriacetate (Fe-NTA)-induced damage and tumor promotion: implications for cancer prevention. Food Chem Toxicol 45:1634–1640. doi: 10.1016/j.fct.2007.02.029 PubMedGoogle Scholar
  3. Aggarwal BB, Shishodia S (2004) Suppression of the nuclear factor-kappa B activation pathway by spice-derived phytochemicals: reasoning for seasoning. Ann N Y Acad Sci 1030:434–441. doi: 10.1196/annals.1329.054 PubMedGoogle Scholar
  4. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398. doi: 10.1146/annurev.pharmtox.39.1.361 PubMedGoogle Scholar
  5. Antlsperger DS, Dirsch VM, Ferreira D, Su JL, Kuo ML, Vollmar AM (2003) Ajoene-induced cell death in human promyeloleukemic cells does not require JNK but is amplified by the inhibition of ERK. Oncogene 22:582–589. doi: 10.1038/sj.onc.1206161 PubMedGoogle Scholar
  6. Antosiewicz J, Herman-Antosiewicz A, Marynowski SW, Singh SV (2006) c-Jun NH(2)-terminal kinase signaling axis regulates diallyl trisulfide-induced generation of reactive oxygen species and cell cycle arrest in human prostate cancer cells. Cancer Res 66:5379–5386. doi: 10.1158/0008-5472.CAN-06-0356 PubMedGoogle Scholar
  7. Ariga T, Seki T (2006) Antithrombotic and anticancer effects of garlic-derived sulfur compounds: a review. Biofactors 26:93–103. doi: 10.1002/biof.5520260201 PubMedGoogle Scholar
  8. Arora A, Seth K, Shukla Y (2004) Reversal of P-glycoprotein-mediated multidrug resistance by diallyl sulfide in K562 leukemic cells and in mouse liver. Carcinogenesis 25:941–949. doi: 10.1093/carcin/bgh060 PubMedGoogle Scholar
  9. Arunkumar A, Vijayababu MR, Venkataraman P, Senthilkumar K, Arunakaran J (2006) Chemoprevention of rat prostate carcinogenesis by diallyl disulfide, an organosulfur compound of garlic. Biol Pharm Bull 29:375–379. doi: 10.1248/bpb.29.375 PubMedGoogle Scholar
  10. Balasenthil S, Ramachandran CR, Nagini S (2001) S-allylcysteine, a garlic constituent, inhibits 7, 12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Nutr Cancer 40:165–172. doi: 10.1207/S15327914NC402_13 PubMedGoogle Scholar
  11. Balasenthil S, Rao KS, Nagini S (2002) Apoptosis induction by S-allylcysteine, a garlic constituent, during 7, 12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Cell Biochem Funct 20:263–268. doi: 10.1002/cbf.967 PubMedGoogle Scholar
  12. Barrett M (2004) The handbook of clinically tested remedies: botanical profiles—product and clinical trial information (Grape Seed—Valerian and Herbal Formulas). Haworth Press, BinghamtonGoogle Scholar
  13. Benkeblia N (2005) Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L.) and garlic (Allium sativum L.) extracts. Braz Arch Biol Technol 48:753–759. doi: 10.1590/S1516-89132005000600011 Google Scholar
  14. Benkeblia N, Lanzotti V (2007) Allium thiosulfinates: chemistry, biological properties and their potential utilization in food preservation. Food 1:193–201Google Scholar
  15. Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–8. doi: 10.1016/S0026-0495(00)80077-3 PubMedGoogle Scholar
  16. Block E (1992) The organosulfur chemistry of the genus Allium—implications for the organic chemistry of sulfur. Angew Chem Int Ed Engl 31:1135–1178. doi: 10.1002/anie.199211351 Google Scholar
  17. Blumberg J, Milbury P (2006) In: Bowman B, Russell R (eds) Present knowledge in nutrition. ILSI Press, Washington, DC, pp 361–370Google Scholar
  18. Bottone FG Jr, Baek SJ, Nixon JB, Eling TE (2002) Diallyl disulfide (DADS) induces the antitumorigenic NSAID-activated gene (NAG-1) by a p53-dependent mechanism in human colorectal HCT 116 cells. J Nutr 132:773–778PubMedGoogle Scholar
  19. Bush AI (2000) Metals and neuroscience. Curr Opin Chem Biol 4:184–191. doi: 10.1016/S1367-5931(99)00073-3 PubMedGoogle Scholar
  20. Challier B, Perarnau JM, Viel JF (1998) Garlic, onion and cereal fibre as protective factors for breast cancer: a French case–control study. Eur J Epidemiol 14:737–747. doi: 10.1023/A:1007512825851 PubMedGoogle Scholar
  21. Chan K, Kan YW (1999) Nrf2 is essential for protection against acute pulmonary injury in mice. Proc Natl Acad Sci USA 96:12731–12736. doi: 10.1073/pnas.96.22.12731 PubMedGoogle Scholar
  22. Chan JM, Wang F, Holly EA (2005) Vegetable and fruit intake and pancreatic cancer in a population-based case–control study in the San Francisco bay area. Cancer Epidemiol Biomarkers Prev 14:2093–2097. doi: 10.1158/1055-9965.EPI-05-0226 PubMedGoogle Scholar
  23. Chen C, Pung D, Leong V et al (2004) Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor Nrf2: effect of chemical structure and stress signals. Free Radic Biol Med 37:1578–1590. doi: 10.1016/j.freeradbiomed.2004.07.021 PubMedGoogle Scholar
  24. Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269:131–140. doi: 10.1016/S0378-1119(01)00449-8 PubMedGoogle Scholar
  25. Chu Q, Ling MT, Feng H et al (2006) A novel anticancer effect of garlic derivatives: inhibition of cancer cell invasion through restoration of E-cadherin expression. Carcinogenesis 27:2180–2189. doi: 10.1093/carcin/bgl054 PubMedGoogle Scholar
  26. Clerkin JS, Naughton R, Quiney C, Cotter TG (2008) Mechanisms of ROS modulated cell survival during carcinogenesis. Cancer Lett 266:30–36. doi: 10.1016/j.canlet.2008.02.029 PubMedGoogle Scholar
  27. Das A, Banik NL, Ray SK (2007) Garlic compounds generate reactive oxygen species leading to activation of stress kinases and cysteine proteases for apoptosis in human glioblastoma T98G and U87MG cells. Cancer 110:1083–1095. doi: 10.1002/cncr.22888 PubMedGoogle Scholar
  28. Dashwood RH, Ho E (2007) Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol 17:363–369. doi: 10.1016/j.semcancer.2007.04.001 PubMedGoogle Scholar
  29. Davenport DM, Wargovich MJ (2005) Modulation of cytochrome P450 enzymes by organosulfur compounds from garlic. Food Chem Toxicol 43:1753–1762. doi: 10.1016/j.fct.2005.05.018 PubMedGoogle Scholar
  30. Davis SR (2005) An overview of the antifungal properties of allicin and its breakdown products—the possibility of a safe and effective antifungal prophylactic. Mycoses 48:95–100. doi: 10.1111/j.1439-0507.2004.01076.x PubMedGoogle Scholar
  31. Delhalle S, Blasius R, Dicato M, Diederich M (2004) A beginner’s guide to NF-kappaB signaling pathways. Ann N Y Acad Sci 1030:1–13. doi: 10.1196/annals.1329.002 PubMedGoogle Scholar
  32. Devrim E, Durak I (2007) Is garlic a promising food for benign prostatic hyperplasia and prostate cancer? Mol Nutr Food Res 51:1319–1323. doi: 10.1002/mnfr.200600302 PubMedGoogle Scholar
  33. Dirsch VM, Gerbes AL, Vollmar AM (1998) Ajoene, a compound of garlic, induces apoptosis in human promyeloleukemic cells, accompanied by generation of reactive oxygen species and activation of nuclear factor kappa B. Mol Pharmacol 53:402–407PubMedGoogle Scholar
  34. Dirsch VM, Antlsperger DS, Hentze H, Vollmar AM (2002) Ajoene, an experimental anti-leukemic drug: mechanism of cell death. Leukemia 16:74–83. doi: 10.1038/sj.leu.2402337 PubMedGoogle Scholar
  35. Doulias PT, Barbouti A, Galaris D, Ischiropoulos H (2001) SIN-1-induced DNA damage in isolated human peripheral blood lymphocytes as assessed by single cell gel electrophoresis (comet assay). Free Radic Biol Med 30:679–685. doi: 10.1016/S0891-5849(00)00511-6 PubMedGoogle Scholar
  36. Druesne N, Pagniez A, Mayeur C et al (2004) Diallyl disulfide (DADS) increases histone acetylation and p21(waf1/cip1) expression in human colon tumor cell lines. Carcinogenesis 25:1227–1236. doi: 10.1093/carcin/bgh123 PubMedGoogle Scholar
  37. Elango EM, Asita H, Nidhi G, Seema P, Banerji A, Kuriakose MA (2004) Inhibition of cyclooxygenase-2 by diallyl sulfides (DAS) in HEK 293T cells. J Appl Genet 45:469–471PubMedGoogle Scholar
  38. Feig DI, Reid TM, Loeb LA (1994) Reactive oxygen species in tumorigenesis. Cancer Res 54:1890s–1894sPubMedGoogle Scholar
  39. Fidler IJ, Schroit AJ (1988) Recognition and destruction of neoplastic cells by activated macrophages: discrimination of altered self. Biochim Biophys Acta 948:151–173PubMedGoogle Scholar
  40. Filomeni G, Aquilano K, Rotilio G, Ciriolo MR (2003) Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulfide. Cancer Res 63:5940–5949PubMedGoogle Scholar
  41. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. doi: 10.1038/35041687 PubMedGoogle Scholar
  42. Fisher CD, Augustine LM, Maher JM et al (2007) Induction of drug-metabolizing enzymes by garlic and allyl sulfide compounds via activation of constitutive androstane receptor and nuclear factor E2-related factor 2. Drug Metab Dispos 35:995–1000. doi: 10.1124/dmd.106.014340 PubMedGoogle Scholar
  43. Fleischauer AT, Arab L (2001) Garlic and cancer: a critical review of the epidemiologic literature. J Nutr 131:1032S–1040SPubMedGoogle Scholar
  44. Fukao T, Hosono T, Misawa S, Seki T, Ariga T (2004a) Chemoprotective effect of diallyl trisulfide from garlic against carbon tetrachloride-induced acute liver injury of rats. Biofactors 21:171–174. doi: 10.1002/biof.552210135 PubMedGoogle Scholar
  45. Fukao T, Hosono T, Misawa S, Seki T, Ariga T (2004b) The effects of allyl sulfides on the induction of phase II detoxification enzymes and liver injury by carbon tetrachloride. Food Chem Toxicol 42:743–749. doi: 10.1016/j.fct.2003.12.010 PubMedGoogle Scholar
  46. Galanis A, Pappa A, Giannakakis A, Lanitis E, Dangaj D, Sandaltzopoulos R (2008) Reactive oxygen species and HIF-1 signalling in cancer. Cancer Lett 266:12–20. doi: 10.1016/j.canlet.2008.02.028 PubMedGoogle Scholar
  47. Galaris D, Skiada V, Barbouti A (2008) Redox signaling and cancer: the role of “labile” iron. Cancer Lett 266:21–29. doi: 10.1016/j.canlet.2008.02.038 PubMedGoogle Scholar
  48. Gao CM, Takezaki T, Ding JH, Li MS, Tajima K (1999) Protective effect of allium vegetables against both esophageal and stomach cancer: a simultaneous case-referent study of a high-epidemic area in Jiangsu Province, China. Jpn J Cancer Res 90:614–621PubMedGoogle Scholar
  49. Geng Z, Rong Y, Lau BH (1997) S-allyl cysteine inhibits activation of nuclear factor kappa B in human T cells. Free Radic Biol Med 23:345–350. doi: 10.1016/S0891-5849(97)00006-3 PubMedGoogle Scholar
  50. Gonzalez CA, Pera G, Agudo A et al (2006) Fruit and vegetable intake and the risk of stomach and oesophagus adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). Int J Cancer 118:2559–2566. doi: 10.1002/ijc.21678 PubMedGoogle Scholar
  51. Guengerich FP (1988) Roles of cytochrome P-450 enzymes in chemical carcinogenesis and cancer chemotherapy. Cancer Res 48:2946–2954PubMedGoogle Scholar
  52. Halliwell B, Gutteridge JM, Cross CE (1992) Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med 119:598–620PubMedGoogle Scholar
  53. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634. doi: 10.1126/science.2683079 PubMedGoogle Scholar
  54. Hassan HT (2004) Ajoene (natural garlic compound): a new anti-leukaemia agent for AML therapy. Leuk Res 28:667–671. doi: 10.1016/j.leukres.2003.10.008 PubMedGoogle Scholar
  55. Hassan ZM, Yaraee R, Zare N, Ghazanfari T, Sarraf Nejad AH, Nazori B (2003) Immunomodulatory affect of R10 fraction of garlic extract on natural killer activity. Int Immunopharmacol 3:1483–1489. doi: 10.1016/S1567-5769(03)00161-9 PubMedGoogle Scholar
  56. Hawkins CL, Davies MJ (2002) Hypochlorite-induced damage to DNA, RNA, and polynucleotides: formation of chloramines and nitrogen-centered radicals. Chem Res Toxicol 15:83–92. doi: 10.1021/tx015548d PubMedGoogle Scholar
  57. Herman-Antosiewicz A, Singh SV (2004) Signal transduction pathways leading to cell cycle arrest and apoptosis induction in cancer cells by Allium vegetable-derived organosulfur compounds: a review. Mutat Res 555:121–131. doi: 10.1016/j.mrfmmm.2004.04.016 PubMedGoogle Scholar
  58. Herman-Antosiewicz A, Powolny AA, Singh SV (2007a) Molecular targets of cancer chemoprevention by garlic-derived organosulfides. Acta Pharmacol Sin 28:1355–1364. doi: 10.1111/j.1745-7254.2007.00682.x PubMedGoogle Scholar
  59. Herman-Antosiewicz A, Stan SD, Hahm ER, Xiao D, Singh SV (2007b) Activation of a novel ataxia-telangiectasia mutated and Rad3 related/checkpoint kinase 1-dependent prometaphase checkpoint in cancer cells by diallyl trisulfide, a promising cancer chemopreventive constituent of processed garlic. Mol Cancer Ther 6:1249–1261. doi: 10.1158/1535-7163.MCT-06-0477 PubMedGoogle Scholar
  60. Ho SE, Ide N, Lau BH (2001) S-allyl cysteine reduces oxidant load in cells involved in the atherogenic process. Phytomedicine 8:39–46. doi: 10.1078/0944-7113-00005 PubMedGoogle Scholar
  61. Hong YS, Ham YA, Choi JH, Kim J (2000) Effects of allyl sulfur compounds and garlic extract on the expression of Bcl-2, Bax, and p53 in non small cell lung cancer cell lines. Exp Mol Med 32:127–134PubMedGoogle Scholar
  62. Hosono T, Fukao T, Ogihara J et al (2005) Diallyl trisulfide suppresses the proliferation and induces apoptosis of human colon cancer cells through oxidative modification of beta-tubulin. J Biol Chem 280:41487–41493. doi: 10.1074/jbc.M507127200 PubMedGoogle Scholar
  63. Howard EW, Ling MT, Chua CW, Cheung HW, Wang X, Wong YC (2007) Garlic-derived S-allylmercaptocysteine is a novel in vivo antimetastatic agent for androgen-independent prostate cancer. Clin Cancer Res 13:1847–1856. doi: 10.1158/1078-0432.CCR-06-2074 PubMedGoogle Scholar
  64. Hsing AW, Chokkalingam AP, Gao YT et al (2002) Allium vegetables and risk of prostate cancer: a population-based study. J Natl Cancer Inst 94:1648–1651PubMedGoogle Scholar
  65. Ide N, Lau BH (2001) Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor-kappa B activation. J Nutr 131:1020S–1026SPubMedGoogle Scholar
  66. Jacob C (2006) A scent of therapy: pharmacological implications of natural products containing redox-active sulfur atoms. Nat Prod Rep 23:851–863. doi: 10.1039/b609523m PubMedGoogle Scholar
  67. Jacob C, Anwar A (2008) The chemistry behind redox regulation with a focus on sulphur redox systems. Physiol Plant 133:469–480. doi: 10.1111/j.1399-3054.2008.01080.x PubMedGoogle Scholar
  68. Jacob C, Giles GI, Giles NM, Sies H (2003) Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem Int Ed Engl 42:4742–4758. doi: 10.1002/anie.200300573 PubMedGoogle Scholar
  69. Jacob C, Knight I, Winyard PG (2006) Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways. Biol Chem 387:1385–1397. doi: 10.1515/BC.2006.174 PubMedGoogle Scholar
  70. Jastrzebski Z, Leontowicz H, Leontowicz M et al (2007) The bioactivity of processed garlic (Allium sativum L.) as shown in vitro and in vivo studies on rats. Food Chem Toxicol 45:1626–1633. doi: 10.1016/j.fct.2007.02.028 PubMedGoogle Scholar
  71. Karmakar S, Banik NL, Patel SJ, Ray SK (2007) Garlic compounds induced calpain and intrinsic caspase cascade for apoptosis in human malignant neuroblastoma SH-SY5Y cells. Apoptosis 12:671–684. doi: 10.1007/s10495-006-0024-x PubMedGoogle Scholar
  72. Kawai Y, Morinaga H, Kondo H et al (2004) Endogenous formation of novel halogenated 2′-deoxycytidine. Hypohalous acid-mediated DNA modification at the site of inflammation. J Biol Chem 279:51241–51249. doi: 10.1074/jbc.M408210200 PubMedGoogle Scholar
  73. Keiss HP, Dirsch VM, Hartung T et al (2003) Garlic (Allium sativum L.) modulates cytokine expression in lipopolysaccharide-activated human blood thereby inhibiting NF-kappaB activity. J Nutr 133:2171–2175PubMedGoogle Scholar
  74. Kim YA, Xiao D, Xiao H et al (2007) Mitochondria-mediated apoptosis by diallyl trisulfide in human prostate cancer cells is associated with generation of reactive oxygen species and regulated by Bax/Bak. Mol Cancer Ther 6:1599–1609. doi: 10.1158/1535-7163.MCT-06-0754 PubMedGoogle Scholar
  75. Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267. doi: 10.1146/annurev.pharmtox.44.101802.121851 PubMedGoogle Scholar
  76. Knowles LM, Milner JA (2000) Allyl sulfides modify cell growth. Drug Metab Drug Interact 17:81–107Google Scholar
  77. Kwon KB, Yoo SJ, Ryu DG et al (2002) Induction of apoptosis by diallyl disulfide through activation of caspase-3 in human leukemia HL-60 cells. Biochem Pharmacol 63:41–47. doi: 10.1016/S0006-2952(01)00860-7 PubMedGoogle Scholar
  78. Lanzotti V (2005) Bioactive saponins from Allium and Aster plants. Phytochem Rev 4:95–110. doi: 10.1007/s11101-005-1254-1 Google Scholar
  79. Lanzotti V (2006) The analysis of onion and garlic. J Chromatogr A 1112:3–22. doi: 10.1016/j.chroma.2005.12.016 PubMedGoogle Scholar
  80. Laurent A, Nicco C, Chereau C et al (2005) Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65:948–956PubMedGoogle Scholar
  81. Lawenda BD, Kelly KM, Ladas EJ, Sagar SM, Vickers A, Blumberg JB (2008) Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst 100:773–783. doi: 10.1093/jnci/djn148 PubMedGoogle Scholar
  82. Li M, Ciu JR, Ye Y et al (2002a) Antitumor activity of Z-ajoene, a natural compound purified from garlic: antimitotic and microtubule-interaction properties. Carcinogenesis 23:573–579. doi: 10.1093/carcin/23.4.573 PubMedGoogle Scholar
  83. Li M, Min JM, Cui JR et al (2002b) Z-ajoene induces apoptosis of HL-60 cells: involvement of Bcl–2 cleavage. Nutr Cancer 42:241–247. doi: 10.1207/S15327914NC422_14 PubMedGoogle Scholar
  84. Liu HG, Xu LH (2007) Garlic oil prevents tributyltin-induced oxidative damage in vivo and in vitro. J Food Prot 70:716–721PubMedGoogle Scholar
  85. Liu KL, Chen HW, Wang RY, Lei YP, Sheen LY, Lii CK (2006) DATS reduces LPS-induced iNOS expression, NO production, oxidative stress, and NF-kappaB activation in RAW 264.7 macrophages. J Agric Food Chem 54:3472–3478. doi: 10.1021/jf060043k PubMedGoogle Scholar
  86. Loft S, Poulsen HE (1996) Cancer risk and oxidative DNA damage in man. J Mol Med 74:297–312. doi: 10.1007/BF00207507 PubMedGoogle Scholar
  87. Lu HF, Sue CC, Yu CS, Chen SC, Chen GW, Chung JG (2004) Diallyl disulfide (DADS) induced apoptosis undergo caspase-3 activity in human bladder cancer T24 cells. Food Chem Toxicol 42:1543–1552. doi: 10.1016/j.fct.2003.06.001 PubMedGoogle Scholar
  88. McCord JM (1998) Oxidative stress in cancer, aids, and neurogenerative diseases. Marcel Dekker, Inc., ParisGoogle Scholar
  89. McCord JM (2002) Oxidative stress related diseases—overview. In: Rodriguez H, Cutler R (eds) Oxidative stress and aging: advances in basic science, diagnostics, and intervention. World Scientific Publishing Co., SingaporeGoogle Scholar
  90. McFadyen MC, Melvin WT, Murray GI (2004) Cytochrome P450 enzymes: novel options for cancer therapeutics. Mol Cancer Ther 3:363–371PubMedGoogle Scholar
  91. Miron T, Rabinkov A, Mirelman D, Wilchek M, Weiner L (2000) The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim Biophys Acta 1463:20–30. doi: 10.1016/S0005-2736(99)00174-1 PubMedGoogle Scholar
  92. Moeller BJ, Cao Y, Li CY, Dewhirst MW (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5:429–441. doi: 10.1016/S1535-6108(04)00115-1 PubMedGoogle Scholar
  93. Munchberg U, Anwar A, Mecklenburg S, Jacob C (2007) Polysulfides as biologically active ingredients of garlic. Org Biomol Chem 5:1505–1518. doi: 10.1039/b703832a PubMedGoogle Scholar
  94. Munday R, Munday JS, Munday CM (2003) Comparative effects of mono-, di-, tri-, and tetrasulfides derived from plants of the Allium family: redox cycling in vitro and hemolytic activity and Phase 2 enzyme induction in vivo. Free Radic Biol Med 34:1200–1211. doi: 10.1016/S0891-5849(03)00144-8 PubMedGoogle Scholar
  95. Murugavel P, Pari L (2007a) Diallyl tetrasulfide modulates the cadmium-induced impairment of membrane bound enzymes in rats. J Basic Clin Physiol Pharmacol 18:37–48PubMedGoogle Scholar
  96. Murugavel P, Pari L (2007b) Effects of diallyl tetrasulfide on cadmium-induced oxidative damage in the liver of rats. Hum Exp Toxicol 26:527–534. doi: 10.1177/0960327107073810 PubMedGoogle Scholar
  97. Mytar B, Siedlar M, Woloszyn M, Ruggiero I, Pryjma J, Zembala M (1999) Induction of reactive oxygen intermediates in human monocytes by tumour cells and their role in spontaneous monocyte cytotoxicity. Br J Cancer 79:737–743. doi: 10.1038/sj.bjc.6690118 PubMedGoogle Scholar
  98. NCI (2008) Garlic and Cancer PreventionGoogle Scholar
  99. Ngo SN, Williams DB, Cobiac L, Head RJ (2007) Does garlic reduce risk of colorectal cancer? A systematic review. J Nutr 137:2264–2269PubMedGoogle Scholar
  100. Nishikawa M (2008) Reactive oxygen species in tumor metastasis. Cancer Lett 266:53–59. doi: 10.1016/j.canlet.2008.02.031 PubMedGoogle Scholar
  101. Nishimura H, Higuchi O, Tateshita K, Tomobe K, Okuma Y, Nomura Y (2006) Antioxidative activity and ameliorative effects of memory impairment of sulfur-containing compounds in Allium species. Biofactors 26:135–146. doi: 10.1002/biof.5520260204 PubMedGoogle Scholar
  102. Oommen S, Anto RJ, Srinivas G, Karunagaran D (2004) Allicin (from garlic) induces caspase-mediated apoptosis in cancer cells. Eur J Pharmacol 485:97–103. doi: 10.1016/j.ejphar.2003.11.059 PubMedGoogle Scholar
  103. Panayiotidis M (2008) Reactive oxygen species (ROS) in multistage carcinogenesis. Cancer Lett 266:3–5. doi: 10.1016/j.canlet.2008.02.027 PubMedGoogle Scholar
  104. Park EK, Kwon KB, Park KI, Park BH, Jhee EC (2002a) Role of Ca(2+) in diallyl disulfide-induced apoptotic cell death of HCT-15 cells. Exp Mol Med 34:250–257PubMedGoogle Scholar
  105. Park KA, Kweon S, Choi H (2002b) Anticarcinogenic effect and modification of cytochrome P450 2E1 by dietary garlic powder in diethylnitrosamine-initiated rat hepatocarcinogenesis. J Biochem Mol Biol 35:615–622PubMedGoogle Scholar
  106. Park SY, Cho SJ, Kwon HC, Lee KR, Rhee DK, Pyo S (2005) Caspase-independent cell death by allicin in human epithelial carcinoma cells: involvement of PKA. Cancer Lett 224:123–132PubMedGoogle Scholar
  107. Patya M, Zahalka MA, Vanichkin A et al (2004) Allicin stimulates lymphocytes and elicits an antitumor effect: a possible role of p21ras. Int Immunol 16:275–281. doi: 10.1093/intimm/dxh038 PubMedGoogle Scholar
  108. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97–110. doi: 10.1016/j.drup.2004.01.004 PubMedGoogle Scholar
  109. Prasad KN, Kumar A, Kochupillai V, Cole WC (1999) High doses of multiple antioxidant vitamins: essential ingredients in improving the efficacy of standard cancer therapy. J Am Coll Nutr 18:13–25PubMedGoogle Scholar
  110. Prasad S, Kalra N, Srivastava S, Shukla Y (2008) Regulation of oxidative stress-mediated apoptosis by diallyl sulfide in DMBA-exposed Swiss mice. Hum Exp Toxicol 27:55–63. doi: 10.1177/0960327108088978 PubMedGoogle Scholar
  111. Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Kumar MN (2006) Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Control Release 113:189–207. doi: 10.1016/j.jconrel.2006.04.015 PubMedGoogle Scholar
  112. Robert V, Mouille B, Mayeur C, Michaud M, Blachier F (2001) Effects of the garlic compound diallyl disulfide on the metabolism, adherence and cell cycle of HT-29 colon carcinoma cells: evidence of sensitive and resistant sub-populations. Carcinogenesis 22:1155–1161. doi: 10.1093/carcin/22.8.1155 PubMedGoogle Scholar
  113. Sankaranarayanan A, Narender T, Kumar S, Dikshit M (2007) Allium sativum constituents: effect on free radical generation from rat neutrophils. Cell Mol Biol (Noisy-le-grand) 53:63–67Google Scholar
  114. Seki T, Tsuji K, Hayato Y, Moritomo T, Ariga T (2000) Garlic and onion oils inhibit proliferation and induce differentiation of HL-60 cells. Cancer Lett 160:29–35. doi: 10.1016/S0304-3835(00)00552-8 PubMedGoogle Scholar
  115. Serrano J, Palmeira CM, Kuehl DW, Wallace KB (1999) Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. Biochim Biophys Acta 1411:201–205. doi: 10.1016/S0005-2728(99)00011-0 PubMedGoogle Scholar
  116. Setiawan VW, Yu GP, Lu QY et al (2005) Allium vegetables and stomach cancer risk in China. Asian Pac J Cancer Prev 6:387–395PubMedGoogle Scholar
  117. Sheweita SA, Abd El-Gabar M, Bastawy M (2001) Carbon tetrachloride-induced changes in the activity of phase II drug-metabolizing enzyme in the liver of male rats: role of antioxidants. Toxicology 165:217–224. doi: 10.1016/S0300-483X(01)00429-2 PubMedGoogle Scholar
  118. Shukla Y, Kalra N (2007) Cancer chemoprevention with garlic and its constituents. Cancer Lett 247:167–181. doi: 10.1016/j.canlet.2006.05.009 PubMedGoogle Scholar
  119. Siegers CP, Robke A, Pentz R (1999) Effects of garlic preparations on superoxide production by phorbol ester activated granulocytes. Phytomedicine 6:13–16PubMedGoogle Scholar
  120. Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (ed) Oxidative stress. Academic Press, pp 1–8Google Scholar
  121. Sigounas G, Hooker J, Anagnostou A, Steiner M (1997a) S-allylmercaptocysteine inhibits cell proliferation and reduces the viability of erythroleukemia, breast, and prostate cancer cell lines. Nutr Cancer 27:186–191PubMedGoogle Scholar
  122. Sigounas G, Hooker JL, Li W, Anagnostou A, Steiner M (1997b) S-allylmercaptocysteine, a stable thioallyl compound, induces apoptosis in erythroleukemia cell lines. Nutr Cancer 28:153–159PubMedCrossRefGoogle Scholar
  123. Singh SV (2001) Impact of garlic organosulfides on p21(H-ras) processing. J Nutr 131:1046S–1048SPubMedGoogle Scholar
  124. Singh SV, Mohan RR, Agarwal R et al (1996) Novel anti-carcinogenic activity of an organosulfide from garlic: inhibition of H-RAS oncogene transformed tumor growth in vivo by diallyl disulfide is associated with inhibition of p21H-ras processing. Biochem Biophys Res Commun 225:660–665. doi: 10.1006/bbrc.1996.1226 PubMedGoogle Scholar
  125. Son EW, Mo SJ, Rhee DK, Pyo S (2006) Inhibition of ICAM-1 expression by garlic component, allicin, in gamma-irradiated human vascular endothelial cells via downregulation of the JNK signaling pathway. Int Immunopharmacol 6:1788–1795. doi: 10.1016/j.intimp.2006.07.021 PubMedGoogle Scholar
  126. Sriram N, Kalayarasan S, Ashokkumar P, Sureshkumar A, Sudhandiran G (2008) Diallyl sulfide induces apoptosis in Colo 320 DM human colon cancer cells: involvement of caspase-3, NF-kappaB, and ERK-2. Mol Cell Biochem 311:157–165. doi: 10.1007/s11010-008-9706-8 PubMedGoogle Scholar
  127. Steinmetz KA, Kushi LH, Bostick RM, Folsom AR, Potter JD (1994) Vegetables, fruit, and colon cancer in the Iowa Women’s Health Study. Am J Epidemiol 139:1–15PubMedGoogle Scholar
  128. Sundaresan S, Subramanian P (2008) Prevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by S-allylcysteine. Mol Cell Biochem 310:209–214. doi: 10.1007/s11010-007-9682-4 PubMedGoogle Scholar
  129. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798PubMedGoogle Scholar
  130. Takahashi M, Niki E (1998) The effect of oxidative stress on cells by oxygen radicals and its inhibition by antioxidants. In: Montagnier L, Olivier R, Pasquier C (eds) Oxidative stress in cancer, aids and neurogenerative diseases. Marcel Dekker, TokyoGoogle Scholar
  131. Tanaka S, Haruma K, Kunihiro M et al (2004) Effects of aged garlic extract (AGE) on colorectal adenomas: a double-blinded study. Hiroshima J Med Sci 53:39–45PubMedGoogle Scholar
  132. Tapiero H, Townsend DM, Tew KD (2004) Organosulfur compounds from Alliaceae in the prevention of human pathologies. Biomed Pharmacother 58:183–193. doi: 10.1016/j.biopha.2004.01.004 PubMedGoogle Scholar
  133. Thomas M, Zhang P, Noordine ML, Vaugelade P, Chaumontet C, Duee PH (2002) Diallyl disulfide increases rat H-ferritin, L-ferritin and transferrin receptor genes in vitro in hepatic cells and in vivo in liver. J Nutr 132:3638–3641PubMedGoogle Scholar
  134. Tilli CM, Stavast-Kooy AJ, Vuerstaek JD et al (2003) The garlic-derived organosulfur component ajoene decreases basal cell carcinoma tumor size by inducing apoptosis. Arch Dermatol Res 295:117–123. doi: 10.1007/s00403-003-0404-9 PubMedGoogle Scholar
  135. Tsai CW, Chen HW, Yang JJ, Sheen LY, Lii CK (2007) Diallyl disulfide and diallyl trisulfide up-regulate the expression of the pi class of glutathione S-transferase via an AP-1-dependent pathway. J Agric Food Chem 55:1019–1026. doi: 10.1021/jf061874t PubMedGoogle Scholar
  136. Ushio-Fukai M, Nakamura Y (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett 266:37–52. doi: 10.1016/j.canlet.2008.02.044 PubMedGoogle Scholar
  137. Wen J, Zhang Y, Chen X, Shen L, Li GC, Xu M (2004) Enhancement of diallyl disulfide-induced apoptosis by inhibitors of MAPKs in human HepG2 hepatoma cells. Biochem Pharmacol 68:323–331. doi: 10.1016/j.bcp.2004.03.027 PubMedGoogle Scholar
  138. Wiese AG, Pacifici RE, Davies KJ (1995) Transient adaptation of oxidative stress in mammalian cells. Arch Biochem Biophys 318:231–240. doi: 10.1006/abbi.1995.1225 PubMedGoogle Scholar
  139. Winyard PG, Moody CJ, Jacob C (2005) Oxidative activation of antioxidant defence. Trends Biochem Sci 30:453–461. doi: 10.1016/j.tibs.2005.06.001 PubMedGoogle Scholar
  140. Wu CC, Sheen LY, Chen HW, Kuo WW, Tsai SJ, Lii CK (2002) Differential effects of garlic oil and its three major organosulfur components on the hepatic detoxification system in rats. J Agric Food Chem 50:378–383. doi: 10.1021/jf010937z PubMedGoogle Scholar
  141. Wu CC, Chung JG, Tsai SJ, Yang JH, Sheen LY (2004) Differential effects of allyl sulfides from garlic essential oil on cell cycle regulation in human liver tumor cells. Food Chem Toxicol 42:1937–1947. doi: 10.1016/j.fct.2004.07.008 PubMedGoogle Scholar
  142. Wu X, Kassie F, Mersch-Sundermann V (2005) Induction of apoptosis in tumor cells by naturally occurring sulfur-containing compounds. Mutat Res 589:81–102. doi: 10.1016/j.mrrev.2004.11.001 PubMedGoogle Scholar
  143. Xiao D, Singh SV (2006) Diallyl trisulfide, a constituent of processed garlic, inactivates Akt to trigger mitochondrial translocation of BAD and caspase-mediated apoptosis in human prostate cancer cells. Carcinogenesis 27:533–540. doi: 10.1093/carcin/bgi228 PubMedGoogle Scholar
  144. Xiao D, Pinto JT, Soh JW et al (2003) Induction of apoptosis by the garlic-derived compound S-allylmercaptocysteine (SAMC) is associated with microtubule depolymerization and c-Jun NH(2)-terminal kinase 1 activation. Cancer Res 63:6825–6837PubMedGoogle Scholar
  145. Xiao D, Choi S, Johnson DE et al (2004) Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene 23:5594–5606. doi: 10.1038/sj.onc.1207747 PubMedGoogle Scholar
  146. Xiao D, Pinto JT, Gundersen GG, Weinstein IB (2005a) Effects of a series of organosulfur compounds on mitotic arrest and induction of apoptosis in colon cancer cells. Mol Cancer Ther 4:1388–1398. doi: 10.1158/1535-7163.MCT-05-0152 PubMedGoogle Scholar
  147. Xiao D, Herman-Antosiewicz A, Antosiewicz J et al (2005b) Diallyl trisulfide-induced G(2)-M phase cell cycle arrest in human prostate cancer cells is caused by reactive oxygen species-dependent destruction and hyperphosphorylation of Cdc 25 C. Oncogene 24:6256–6268. doi: 10.1038/sj.onc.1208759 PubMedGoogle Scholar
  148. Xiao D, Li M, Herman-Antosiewicz A et al (2006) Diallyl trisulfide inhibits angiogenic features of human umbilical vein endothelial cells by causing Akt inactivation and down-regulation of VEGF and VEGF-R2. Nutr Cancer 55:94–107. doi: 10.1207/s15327914nc5501_12 PubMedGoogle Scholar
  149. Yang CS, Chhabra SK, Hong JY, Smith TJ (2001) Mechanisms of inhibition of chemical toxicity and carcinogenesis by diallyl sulfide (DAS) and related compounds from garlic. J Nutr 131:1041S–1045SPubMedGoogle Scholar
  150. Yin M-C, Cheng W-S (1998) Antioxidant activity of several Allium members. J Agric Food Chem 46:4097–4101. doi: 10.1021/jf980344x Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • C. Scherer
    • 1
    • 2
  • C. Jacob
    • 2
  • M. Dicato
    • 1
  • M. Diederich
    • 1
    Email author
  1. 1.Laboratoire de Biologie Moléculaire et Cellulaire du CancerLuxembourgLuxemburg
  2. 2.Bioorganic ChemistrySaarland UniversitySaarbrückenGermany

Personalised recommendations