Advertisement

Phytochemistry Reviews

, Volume 8, Issue 1, pp 227–242 | Cite as

Role of glucosinolates in plant invasiveness

  • Caroline Müller
Article

Abstract

Many plants have been intentionally or accidentally introduced to new habitats where some of them now cause major ecological and economic threats to natural and agricultural ecosystems. The potential to become invasive might depend on plant characteristics, as well as on specific interactions with other organisms acting as symbionts or antagonists, including other plants, microbes, herbivores, or pollinators. The invasion potential furthermore depends on abiotic conditions in the habitat. Several species of the Brassicaceae, well known for their glucosinolate–myrosinase defence system, are invasive species. Various factors are reviewed here that might explain why these species were so successful in colonising new areas. Specific emphasis is laid on the role of glucosinolates and their hydrolysis products in the invasion potential. This particular defence system is involved specifically in plant–plant, plant–microbe and plant–insect interactions. Most research has been done on the mechanisms underlying invasion success of Alliaria petiolata and Brassica spp., followed by Bunias orientalis and Lepidium draba. Some examples are also given for plants that are not necessarily considered as invasives, but which were well investigated with respect to their interference potential with their biotic environment. For each species, most likely a combination of different plant characteristics enhanced the competitive abilities and led to diverse invasive phenotypes.

Keywords

Allelopathy Enemy release Evolution of increased competitive ability Life-history traits Plant–antagonist interactions 

References

  1. Agrawal AA, Kotanen PM (2003) Herbivores and the success of exotic plants: a phylogenetically controlled experiment. Ecol Lett 6:712–715. doi: 10.1046/j.1461-0248.2003.00498.x CrossRefGoogle Scholar
  2. Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66. doi: 10.1078/1433-8319-00004 CrossRefGoogle Scholar
  3. Angelini L, Lazzeri L, Galletti S, Cozzani A, Macchia M, Palmieri S (1998) Antigerminative activity of three glucosinolate-derived products generated by myrosinase hydrolysis. Seed Sci Technol 26:771–779Google Scholar
  4. Baret S, Maurice S, Le Bourgeois T, Strasberg D (2004) Altitudinal variation in fertility and vegetative growth in the invasive plant Rubus alceifolius Poiret (Rosaceae), on Réunion island. Plant Ecol 172:265–273. doi: 10.1023/B:VEGE.0000026345.67250.d2 CrossRefGoogle Scholar
  5. Bell DT, Muller CH (1973) Dominance of California annual grasslands by Brassica nigra. Am Midl Nat 90:277–299. doi: 10.2307/2424453 CrossRefGoogle Scholar
  6. Bialy Z, Oleszek W, Lewis JA, Fenwick GR (1990) Allelopathic potential of glucosinolates (mustard oil glycosides) and their degradation products against wheat. Plant Soil 129:227–281Google Scholar
  7. Bidart-Bouzat MG, Mithen R, Berenbaum MR (2005) Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia 145:415–424. doi: 10.1007/s00442-005-0158-5 PubMedCrossRefGoogle Scholar
  8. Blande JD, Pickett JA, Poppy GM (2007) A comparison of semiochemically mediated interactions involving specialist and generalist Brassica-feeding aphids and the braconid parasitoid Diaeretiella rapae. J Chem Ecol 33:767–779. doi: 10.1007/s10886-007-9264-7 PubMedCrossRefGoogle Scholar
  9. Bleeker W, Matthies A (2005) Hybrid zones between invasive Rorippa austriaca and native R. sylvestris (Brassicaceae) in Germany: ploidy levels and patterns of fitness in the field. Heredity 94:664–670. doi: 10.1038/sj.hdy.6800687 PubMedCrossRefGoogle Scholar
  10. Blossey B, Nötzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol 83:887–889. doi: 10.2307/2261425 CrossRefGoogle Scholar
  11. Blossey B, Nuzzo V, Hinz H, Gerber E (2001) Developing biocontrol of Alliaria petiolata (M. Bieb.) Cavara and Grande (garlic mustard). Nat Areas J 21:357–367Google Scholar
  12. Borek V, Morra MJ, Brown PD, McCaffrey JP (1994) Allelochemicals produced during sinigrin decomposition in soil. J Agric Food Chem 42:1030–1034. doi: 10.1021/jf00040a037 CrossRefGoogle Scholar
  13. Borek V, Morra MJ, McCaffrey JP (1996) Myrosinase activity in soil extracts. Soil Sci Soc Am J 60:1792–1797Google Scholar
  14. Bossdorf O, Prati D, Auge H, Schmid B (2004a) Reduced competitive ability in an invasive plant. Ecol Lett 7:346–353. doi: 10.1111/j.1461-0248.2004.00583.x CrossRefGoogle Scholar
  15. Bossdorf O, Schröder S, Prati D, Auge H (2004b) Palatability and tolerance to simulated herbivory in native and introduced populations of Alliaria petiolata (Brassicaceae). Am J Bot 91:856–862. doi: 10.3732/ajb.91.6.856 CrossRefGoogle Scholar
  16. Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11. doi: 10.1007/s00442-005-0070-z PubMedCrossRefGoogle Scholar
  17. Bradburne RP, Mithen R (2000) Glucosinolate genetics and the attraction of the aphid parasitoid Diaeretiella rapae to Brassica. Proc R Soc Lond B Biol Sci 267:89–95. doi: 10.1098/rspb.2000.0971 CrossRefGoogle Scholar
  18. Bridges M, Jones AME, Bones AM, Hodgson C, Cole R, Bartlet E et al (2002) Spatial organization of the glucosinolate–myrosinase system in Brassica specialist aphids is similar to that of the host plant. Proc R Soc Lond B Biol Sci 269:187–191. doi: 10.1098/rspb.2001.1861 CrossRefGoogle Scholar
  19. Brown PD, Morra MJ (1995) Glucosinolate-containing plant tissues as bioherbicides. J Agric Food Chem 43:3070–3074. doi: 10.1021/jf00060a015 CrossRefGoogle Scholar
  20. Brown PD, Morra MJ (1996) Hydrolysis products of glucosinolates in Brassica napus tissues as inhibitors of seed germination. Plant Soil 181:307–316. doi: 10.1007/BF00012065 CrossRefGoogle Scholar
  21. Brown PD, Morra MJ, McCaffrey JP, Auld DL, Williams L (1991) Allelochemicals produced during glucosinolate degradation in soil. J Chem Ecol 17:2021–2034. doi: 10.1007/BF00992585 CrossRefGoogle Scholar
  22. Bukovinszky T, Gols R, Posthumus MA, Vet LEM, van Lenteren JC (2005) Variation in plant volatiles and attraction of the parasitoid Diadegma semiclausum (Hellen). J Chem Ecol 31:461–480. doi: 10.1007/s10886-005-2019-4 PubMedCrossRefGoogle Scholar
  23. Buschmann H, Edwards PJ, Dietz H (2005) Variation in growth pattern and response to slug damage among native and invasive provenances of four perennial Brassicaceae species. J Ecol 93:322–334. doi: 10.1111/j.1365-2745.2005.00991.x CrossRefGoogle Scholar
  24. Buschmann H, Edwards PJ, Dietz H (2006) Responses of native and invasive Brassicaceae species to slug herbivory. Acta Oecol Int J Ecol 30:126–135. doi: 10.1016/j.actao.2005.11.006 CrossRefGoogle Scholar
  25. Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523. doi: 10.1126/science.290.5491.521 PubMedCrossRefGoogle Scholar
  26. Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443CrossRefGoogle Scholar
  27. Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427:731–733. doi: 10.1038/nature02322 PubMedCrossRefGoogle Scholar
  28. Carey EV, Marler MJ, Callaway RM (2004) Mycorrhizae transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology. Plant Ecol 172:133–141. doi: 10.1023/B:VEGE.0000026031.14086.f1 CrossRefGoogle Scholar
  29. Chew FS (1988) Biological effects of glucosinolates. In: Cutler HG (ed) Biologically active natural products—potential use in agriculture. In: American chemical society symposium, Washington DC, pp 155–181Google Scholar
  30. Chittka L, Schurkens S (2001) Successful invasion of a floral market—an exotic Asian plant has moved in on Europe’s river-banks by bribing pollinators. Nature 411:653–653. doi: 10.1038/35079676 PubMedCrossRefGoogle Scholar
  31. Choesin DN, Boerner REJ (1991) Allyl isothiocyanate release and the allelopathic potential of Brassica napus (Brassicaceae). Am J Bot 78:1083–1090. doi: 10.2307/2444897 CrossRefGoogle Scholar
  32. Cipollini DF (2002) Variation in the expression of chemical defenses in Alliaria petiolata in the field and common garden. Am J Bot 89:1422–1430. doi: 10.3732/ajb.89.9.1422 CrossRefGoogle Scholar
  33. Cipollini D, Gruner B (2007) Cyanide in the chemical arsenal of garlic mustard, Alliaria petiolata. J Chem Ecol 33:85–94. doi: 10.1007/s10886-006-9205-x PubMedCrossRefGoogle Scholar
  34. Cipollini DF, Mbagwu J, Barto K, Hillstrom C, Enright S (2005) Expression of constitutive and inducible chemical defenses in native and invasive populations of Alliaria petiolata. J Chem Ecol 31:1255–1267. doi: 10.1007/s10886-005-5284-3 PubMedCrossRefGoogle Scholar
  35. Ciska E, Martyniak-Przybyszewska B, Kozlowska H (2000) Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J Agric Food Chem 48:2862–2867. doi: 10.1021/jf981373a PubMedCrossRefGoogle Scholar
  36. Cripps MG, Schwarzländer M, McKenney JL, Hinz HL, Price WJ (2006) Biogeographical comparison of the arthropod herbivore communities associated with Lepidium draba in its native, expanded and introduced ranges. J Biogeogr 33:2107–2119. doi: 10.1111/j.1365-2699.2006.01560.x CrossRefGoogle Scholar
  37. Dietz H, Winterhalter P (1996) Phytotoxic constituents from Bunia orientalis leaves. Phytochemistry 42:1005–1010. doi: 10.1016/0031-9422(96)00020-9 CrossRefGoogle Scholar
  38. Dietz H, Steinlein T, Ullmann I (1999) Establishment of the invasive perennial herb Bunias orientalis L.: an experimental approach. Acta Oecol 20:621–632. doi: 10.1016/S1146-609X(99)00104-6 CrossRefGoogle Scholar
  39. Enright SM, Cipollini D (2007) Infection by powdery mildew Erysiphe cruciferarum (Erysiphaceae) strongly affects growth and fitness of Alliaria petiolata (Brassicaceae). Am J Bot 94:1813–1820. doi: 10.3732/ajb.94.11.1813 CrossRefGoogle Scholar
  40. Eppstein MJ, Molofsky J (2007) Invasiveness in plant communities with feedbacks. Ecol Lett 10:253–263. doi: 10.1111/j.1461-0248.2007.01017.x PubMedCrossRefGoogle Scholar
  41. Francis A, Warwick SI (2007) The biology of invasive alien plants in Canada. 8. Lepidium latifolium L. Can J Plant Sci 87:639–658Google Scholar
  42. Frenzel M, Brandl R (2003) Diversity and abundance patterns of phytophagous insect communities on alien and native host plants in the Brassicaceae. Ecography 26:723–730. doi: 10.1111/j.0906-7590.2003.03649.x CrossRefGoogle Scholar
  43. Gaskin JF, Schaal BA (2002) Hybrid Tamarix widespread in US invasion and undetected in native Asian range. Proc Natl Acad Sci USA 99:11256–11259. doi: 10.1073/pnas.132403299 PubMedCrossRefGoogle Scholar
  44. Giamoustaris A, Mithen R (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann Appl Biol 126:347–363. doi: 10.1111/j.1744-7348.1995.tb05371.x CrossRefGoogle Scholar
  45. Gimsing AL, Kirkegaard JA (2008) Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochem Rev. doi: 10.1007/s11101-008-9105-5 Google Scholar
  46. Girling RD, Hassall M, Turner JG, Poppy GM (2006) Behavioural responses of the aphid parasitoid Diaeretiella rapae to volatiles from Arabidopsis thaliana induced by Myzus persicae. Entomol Exp Appl 120:1–10. doi: 10.1111/j.1570-7458.2006.00423.x CrossRefGoogle Scholar
  47. Goodwin J (1992) The role of mycorrhizal fungi in competitive interactions among native bunchgrasses and alien weeds—a review and synthesis. Northwest Sci 66:251–260Google Scholar
  48. Halbrendt JM (1996) Allelopathy in the management of plant–parasitic nematodes. J Nematol 28:8–14PubMedGoogle Scholar
  49. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333. doi: 10.1146/annurev.arplant.57.032905.105228 PubMedCrossRefGoogle Scholar
  50. Haribal M, Renwick JAA (1998) Isovitexin 6″-O-β-d-glucopyranoside: a feeding deterrent to Pieris napi oleracea from Alliaria petiolata. Phytochemistry 47:1237–1240. doi: 10.1016/S0031-9422(97)00740-1 CrossRefGoogle Scholar
  51. Haribal M, Renwick JAA (2001) Seasonal and population variation in flavonoid and alliarinoside content of Alliaria petiolata. J Chem Ecol 27:1585–1594. doi: 10.1023/A:1010406224265 PubMedCrossRefGoogle Scholar
  52. Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15. doi: 10.1111/j.0022-0477.2004.00953.x CrossRefGoogle Scholar
  53. Jalas J, Suominen J (1994) Atlas Florae Europaeae, 10—Cruciferae (Ricotia to Raphanus). HelsinkiGoogle Scholar
  54. Jalas J, Suominen J, Lampinen R (1996) Atlas Florae Europaeae, 11—Cruciferae (Sisymbrium to Aubrieta). HelsinkiGoogle Scholar
  55. Jönsson M, Lindkvist A, Anderson P (2005) Behavioural responses in three ichneumonid pollen beetle parasitoids to volatiles emitted from different phenological stages of oilseed rape. Entomol Exp Appl 115:363–369. doi: 10.1111/j.1570-7458.2005.00271.x CrossRefGoogle Scholar
  56. Joshi J, Vrieling K (2005) The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecol Lett 8:704–714. doi: 10.1111/j.1461-0248.2005.00769.x CrossRefGoogle Scholar
  57. Kawabata J, Fukushi Y, Hayashi R, Suzuki K, Mishima Y, Yamane A et al (1989) 8-Methylsulfinyloctyl isothiocyanate as an allelochemical candidate from Rorippa sylvestris Besser. Agric Biol Chem 53:3361–3362Google Scholar
  58. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170. doi: 10.1016/S0169-5347(02)02499-0 CrossRefGoogle Scholar
  59. Kiemnec GL, McInnis ML (2002) Hoary cress (Cardaria draba) root extract reduces germination and root growth of five plant species. Weed Technol 16:231–234. doi: 10.1614/0890-037X(2002)016[0231:HCCDRE]2.0.CO;2 CrossRefGoogle Scholar
  60. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70. doi: 10.1038/417067a PubMedCrossRefGoogle Scholar
  61. Kudoh H, Nakayama M, Lihova J, Marhold K (2007) Does invasion involve alternation of germination requirements? A comparative study between native and introduced strains of an annual Brassicaceae, Cardamine hirsuta. Ecol Res 22:869–875. doi: 10.1007/s11284-007-0417-5 CrossRefGoogle Scholar
  62. Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol 175:176–184. doi: 10.1111/j.1469-8137.2007.02090.x PubMedCrossRefGoogle Scholar
  63. Lankau RA, Strauss SY (2007) Mutual feedbacks maintain both genetic and species diversity in a plant community. Science 317:1561–1563. doi: 10.1126/science.1147455 PubMedCrossRefGoogle Scholar
  64. Larson L, Kiemnec G, Smergut T (2000) Hoary cress reproduction in a sagebrush ecosystem. J Range Manage 53:556–559. doi: 10.2307/4003658 CrossRefGoogle Scholar
  65. Lau JA, Puliafico KP, Kopshever JA, Steltzer H, Jarvis EP, Schwarzländer M et al (2008) Inference of allelopathy is complicated by effects of activated carbon on plant growth. New Phytol 178:412–423. doi: 10.1111/j.1469-8137.2007.02360.x PubMedCrossRefGoogle Scholar
  66. Lazzeri L, Curto G, Leoni O, Dallavalle E (2004) Effects of glucosinolates and their enzymatic hydrolysis via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White) Chitw. J Agric Food Chem 52:6703–6707. doi: 10.1021/jf030776u PubMedCrossRefGoogle Scholar
  67. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. doi: 10.1016/S0169-5347(02)02554-5 CrossRefGoogle Scholar
  68. Lee PLM, Patel RM, Conlan RS, Wainwright SJ, Hipkin CR (2004) Comparison of genetic diversities in native and alien populations of hoary mustard (Hirschfeldia incana L. Lagreze-Fossat). Int J Plant Sci 165:833–843. doi: 10.1086/422043 CrossRefGoogle Scholar
  69. Lewis KC, Bazzaz FA, Liao Q, Orians CM (2006) Geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata. Oecologia 148:384–395. doi: 10.1007/s00442-006-0380-9 PubMedCrossRefGoogle Scholar
  70. Linde M, Diel S, Neuffer B (2001) Flowering ecotypes of Capsella bursa-pastoris (L.) Medik. (Brassicaceae) analysed by a cosegregation of phenotypic characters (QTL) and molecular markers. Ann Bot (Lond) 87:91–99. doi: 10.1006/anbo.2000.1308 CrossRefGoogle Scholar
  71. Louda SM, Collinge SK (1992) Plant-resistance to insect herbivores—a field-test of the environmental-stress hypothesis. Ecology 73:153–169. doi: 10.2307/1938728 CrossRefGoogle Scholar
  72. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi: 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 CrossRefGoogle Scholar
  73. Maron JL, Vilà M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–373. doi: 10.1034/j.1600-0706.2001.950301.x CrossRefGoogle Scholar
  74. Mason-Sedun W, Jessop RS, Lovett JV (1986) Differential phytotoxicity among species and cultivars of the genus Brassica to wheat. 1. Laboratory and field screening of species. Plant Soil 93:3–16. doi: 10.1007/BF02377141 CrossRefGoogle Scholar
  75. Mattiacci L, Rocca BA, Scascighini N, D’Alessandro M, Hern A, Dorn S (2001) Systemically induced plant volatiles emitted at the time of “danger”. J Chem Ecol 27:2233–2252. doi: 10.1023/A:1012278804105 PubMedCrossRefGoogle Scholar
  76. McCarthy BC, Hanson SL (1998) An assessment of the allelopathic potential of the invasive weed Alliaria petiolata (Brassicaceae). Castanea 63:68–73Google Scholar
  77. McKenney JL (2005) An inter-continental comparison of vigor and herbivory for the invasive plant Lepidium draba. MSc Thesis, University of Idaho, Moscow, USAGoogle Scholar
  78. McKenney JL, Cripps MG, Price WJ, Hinz HL, Schwarzländer M (2007) No difference in competitive ability between invasive North-American and native European Lepidium draba populations. Plant Ecol 193:293–303. doi: 10.1007/s11258-007-9268-y CrossRefGoogle Scholar
  79. Ménard R, Larue J-P, Silué D, Thouvenot D (1999) Glucosinolates in cauliflower as biochemical markers for resistance against downy mildew. Phytochemistry 52:29–35. doi: 10.1016/S0031-9422(99)00165-X CrossRefGoogle Scholar
  80. Monaco TA, Johnson DA, Creech JE (2005) Morphological and physiological responses of the invasive weed Isatis tinctoria to contrasting light, soil-nitrogen and water. Weed Res 45:460–466. doi: 10.1111/j.1365-3180.2005.00480.x CrossRefGoogle Scholar
  81. Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98:5446–5451. doi: 10.1073/pnas.091093398 PubMedCrossRefGoogle Scholar
  82. Muller CH (1969) Allelopathy as a factor in ecological process. Vegetatio 16:348–357. doi: 10.1007/BF00332847 CrossRefGoogle Scholar
  83. Müller C, Martens N (2005) Testing predictions of the ‘evolution of increased competitive ability’ hypothesis for an invasive crucifer. Evol Ecol 19:533–550. doi: 10.1007/s10682-005-1022-0 CrossRefGoogle Scholar
  84. Müller-Schärer H, Steinger T (2004) Predicting evolutionary change in invasive, exotic plants and its consequence for plant–herbivore interactions. In: Ehler LE, Sforza R, Mateille T (eds) Genetics, evolution and biological control. CABI Publishing, Wellingford, pp 137–162Google Scholar
  85. Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: implications for biological control. Trends Ecol Evol 19:417–422. doi: 10.1016/j.tree.2004.05.010 PubMedCrossRefGoogle Scholar
  86. Mulligan GA, Findlay JN (1974) The biology of Canadian weeds. 3. Cardaria draba, C. chalepensis, and C. pubescens. Can J Plant Sci 54:149–160CrossRefGoogle Scholar
  87. Norsworthy JK (2003) Allelopathic potential of wild radish (Raphanus raphanistrum). Weed Technol 17:307–313. doi: 10.1614/0890-037X(2003)017[0307:APOWRR]2.0.CO;2 CrossRefGoogle Scholar
  88. Nuzzo V (1993) Distribution and spread of the invasive biennial Alliaria petiolata (garlic mustard) in North-America. In: McKnight B (ed) Biological pollution: the control and impact of invasive exotic species. Indiana Academy of Science, Indianapolis, pp 137–145Google Scholar
  89. Nuzzo V (1999) Invasion pattern of the herb garlic mustard (Alliaria petiolata) in high quality forests. Biol Invasions 1:169–179. doi: 10.1023/A:1010009514048 CrossRefGoogle Scholar
  90. Pimentel D (2002) Biological invasions: economic and environmental costs of alien plant, animal, and microbe species. CRC, Boca RatonGoogle Scholar
  91. Pokorny ML, Krueger-Mangold JM (2007) Evaluating montana’s dyer’s woad (Isatis tinctoria) cooperative eradication project. Weed Technol 21:262–269. doi: 10.1614/WT-06-048.1 CrossRefGoogle Scholar
  92. Prati D, Bossdorf O (2004) Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am J Bot 91:285–288. doi: 10.3732/ajb.91.2.285 CrossRefGoogle Scholar
  93. Pyšek P, Richardson DM, Pergil J, Jarošík V, Sixtová Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244. doi: 10.1016/j.tree.2008.02.002 PubMedCrossRefGoogle Scholar
  94. Qasem JR (1994) Allelopathic effect of white top (Lepidium draba) on wheat and barley. Allelopath J 1:29–40Google Scholar
  95. Rahman L, Somers T (2005) Suppression of root knot nematode (Meloidogyne javanica) after incorporation of Indian mustard cv. Nemfix as green manure and seed meal in vineyards. Australas Plant Pathol 34:77–83. doi: 10.1071/AP04081 CrossRefGoogle Scholar
  96. Reifenrath K, Müller C (2007) Species-specific and leaf-age dependent effects of ultraviolet radiation on two Brassicaceae. Phytochemistry 68:875–885. doi: 10.1016/j.phytochem.2006.12.008 PubMedCrossRefGoogle Scholar
  97. Renwick JAA (2002) The chemical world of crucivores: lures, treats and traps. Entomol Exp Appl 104:35–42. doi: 10.1023/A:1021231732022 CrossRefGoogle Scholar
  98. Renwick JAA, Zhang WQ, Haribal M, Attygalle AB, Lopez KD (2001) Dual chemical barriers protect a plant against different larval stages of an insect. J Chem Ecol 27:1575–1583. doi: 10.1023/A:1010402107427 PubMedCrossRefGoogle Scholar
  99. Roberts KJ, Anderson RC (2001) Effect of garlic mustard [Alliaria petiolata (Bieb. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am Midl Nat 146:146–152. doi: 10.1674/0003-0031(2001)146[0146:EOGMAP]2.0.CO;2 CrossRefGoogle Scholar
  100. Scheublin TR, van Logtestijn RSP, van der Heijden MGA (2007) Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J Ecol 95:631–638. doi: 10.1111/j.1365-2745.2007.01244.x CrossRefGoogle Scholar
  101. Schierenbeck KA, Mack RN, Sharitz RR (1994) Effects of herbivory on growth and biomass allocation in native and introduced species of Lonicera. Ecology 75:1661–1672. doi: 10.2307/1939626 CrossRefGoogle Scholar
  102. Schreiner RP, Koide RT (1993a) Antifungal compounds from the roots of mycotrophic and non-mycotrophic plant-species. New Phytol 123:99–105Google Scholar
  103. Schreiner RP, Koide RT (1993b) Mustards, mustard oils and mycorrhizas. New Phytol 123:107–113Google Scholar
  104. Schurkens S, Chittka L (2001) The significance of the invasive crucifer species Bunias orientalis (Brassicaceae) as a nectar source for central European insects. Entomol Gen 25:115–120Google Scholar
  105. Sebald O, Seybold SJ, Philippi G (1993) Die Farn- und Blütenpflanzen Baden-Württembergs. Ulmer, StuttgartGoogle Scholar
  106. Siemens DH, Mitchell-Olds T (1996) Glucosinolates and herbivory by specialists (Coleoptera: Chrysomelidae, Lepidoptera: Plutellidae): consequences of concentration and induced resistance. Environ Entomol 25:1344–1353Google Scholar
  107. Siemens DH, Garner SH, Mitchell-Olds T, Callaway RM (2002) Cost of defense in the context of plant competition: Brassica rapa may grow and defend. Ecology 83:505–517Google Scholar
  108. Smith BJ, Kirkegaard JA (2002) In vitro inhibition of soil microorganisms by 2-phenylethyl isothiocyanate. Plant Pathol 51:585–593. doi: 10.1046/j.1365-3059.2002.00744.x CrossRefGoogle Scholar
  109. Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC et al (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4:727–731. doi: 10.1371/journal.pbio.0040140 CrossRefGoogle Scholar
  110. Strauss SY, Siemens DH, Decher MB, Mitchell-Olds T (1999) Ecological costs of plant resistance to herbivores in the currency of pollination. Evol Int J Org Evol 53:1105–1113. doi: 10.2307/2640815 Google Scholar
  111. Strauss SY, Rudgers JA, Lau JA, Irwin RE (2002) Direct and ecological costs of resistance to herbivory. Trends Ecol Evol 17:278–285. doi: 10.1016/S0169-5347(02)02483-7 CrossRefGoogle Scholar
  112. Travers-Martin N, Müller C (2007) Specificity of induction responses in a Brassicaceae and their effects on a specialist herbivore. J Chem Ecol 33:1582–1597. doi: 10.1007/s10886-007-9322-1 PubMedCrossRefGoogle Scholar
  113. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine D, Walters SM et al (1993) Flora Europaea. Cambridge University Press, CambridgeGoogle Scholar
  114. van der Meijden E (1996) Plant defence, an evolutionary dilemma. Contrasting effects of (specialist and generalist) herbivores and natural enemies. Entomol Exp Appl 80:307–310. doi: 10.1007/BF00194780 CrossRefGoogle Scholar
  115. van Loon JJA, de Boer JG, Dicke M (2000) Parasitoid–plant mutualism: parasitoid attack of herbivore increases plant reproduction. Entomol Exp Appl 97:219–227. doi: 10.1023/A:1004032225239 CrossRefGoogle Scholar
  116. Vaughn SF, Berhow MA (1999) Allelochemicals isolated from tissues of the invasive weed garlic mustard (Alliaria petiolata). J Chem Ecol 25:2495–2504. doi: 10.1023/A:1020874124645 CrossRefGoogle Scholar
  117. Vilà M, Weiner J (2004) Are invasive plant species better competitors than native plant species? Evidence from pair-wise experiments. Oikos 105:229–238. doi: 10.1111/j.0030-1299.2004.12682.x CrossRefGoogle Scholar
  118. Voss EG (1985) Michigan flora. Part II. Dicots. Cranbrook Institute of Science, Bloomfield HillsGoogle Scholar
  119. Warwick SI, Francis A (2006) The biology of invasive alien plants in Canada. 6. Berteroa incana (L.) DC. Can J Plant Sci 86:1297–1309Google Scholar
  120. Weidenhamer JD (1996) Distinguishing resource competition and chemical interference: overcoming the methodological impasse. Agron J 88:866–875Google Scholar
  121. Weinig C, Brock MT, Dechaine JA, Welch SM (2007) Resolving the genetic basis of invasiveness and predicting invasions. Genetica 129:205–216. doi: 10.1007/s10709-006-9015-7 PubMedCrossRefGoogle Scholar
  122. Williamson M (1996) Biological invasions. Chapman & Hall, DevonGoogle Scholar
  123. Wolfe LM (2002) Why alien invaders succeed: support for the escape-from-enemy hypothesis. Am Nat 160:705–711. doi: 10.1086/343872 PubMedCrossRefGoogle Scholar
  124. Yamane A, Fujikura J, Ogawa H, Mizutani J (1992a) Isothiocyanates as allelopathic compounds from Rorippa indica Hiern (Cruciferae) roots. J Chem Ecol 18:1941–1954. doi: 10.1007/BF00981918 CrossRefGoogle Scholar
  125. Yamane A, Nishimura H, Mizutani J (1992b) Allelopathy of yellow fieldcress (Rorippa sylvestris): identification and characterization of phytotoxic constituents. J Chem Ecol 18:683–691. doi: 10.1007/BF00994606 CrossRefGoogle Scholar
  126. Zasada IA, Ferris H (2004) Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles. Soil Biol Biochem 36:1017–1024. doi: 10.1016/j.soilbio.2003.12.014 CrossRefGoogle Scholar
  127. Zeng RS, Mallik AU, Setliff E (2003) Growth stimulation of ectomycorrhizal fungi by root exudates of Brassicaceae plants: role of degraded compounds of indole glucosinolates. J Chem Ecol 29:1337–1355. doi: 10.1023/A:1024257218558 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Chemical EcologyUniversity of BielefeldBielefeldGermany

Personalised recommendations