Phytochemistry Reviews

, Volume 8, Issue 1, pp 283–298 | Cite as

Physiological effects of broccoli consumption

Article

Abstract

Epidemiological studies suggest that broccoli can decrease risk for cancer. Broccoli contains many bioactives, including vitamins C and E, quercetin and kaempferol glycosides and, like other members of the Brassicaceae, several glucosinolates, including glucobrassicin (3-indolylmethyl glucosinolate) and glucoraphanin (4-methylsulphinylbutyl glucosinolate). A key bioactive component responsible for much of this activity may be sulforaphane (1-isothiocyanato-4-methylsulfinylbutane), a hydrolysis product of glucoraphanin. Sulforaphane not only upregulates a number of phase II detoxification enzymes involved in clearance of chemical carcinogens and reactive oxygen species, but has anti-tumorigenic properties, causing cell cycle arrest and apoptosis of cancer cells. The bioequivalency of sulforaphane and whole broccoli have not been fully evaluated, leaving it unclear whether whole broccoli provides a similar effect to purified sulforaphane, or whether the presence of other components in broccoli, such as indole-3-carbinol from glucobrassicin, is an added health benefit. Dietary indole-3-carbinol is known to alter estrogen metabolism, to cause cell cycle arrest and apoptosis of cancer cells and, in animals, to decrease risk for breast cancer. Recent research suggests that both dietary broccoli and the individual components sulforaphane and indole-3-carbinol may offer protection from a far broader array of diseases than cancer, including cardiovascular and neurodegenerative diseases. A common link between these oxidative degenerative diseases and cancer may be aggravation by inflammation. A small body of literature is forming suggesting that both indole-3-carbinol and sulforaphane may protect against inflammation, inhibiting cytokine production. It remains to be seen whether cancer, cardiovascular disease, dementia and other diseases of aging can all benefit from a diet rich in broccoli and other crucifers.

Keywords

Broccoli Sulforaphane Anti-inflammatory Indole-3-carbinol Anti-carcinogenesis 

Abbreviations

AhR

Aryl hydrocarbon receptor

ARE

Antioxidant response element

CNS

Central nervous system

COX-2

Cyclooxygenase-2

CYP

Cytochrome P450

DIM

Diindolyl methane

DMBA

Dimethyl benzanthracene

ERK

Extracellular signal-regulated kinase

EROD

Ethoxyresorufin O-deethylase

GCS

γ-Glutamyl cysteine synthetase

GSH

Glutathione

GST

Glutathione S-transferase

Hnqo1

Human quinone reductase 1 gene

IBD

Inflammatory bowel disease

IL-6

Interleukin 6

IL-1β

Interleukin 1 beta

iNOS

Inducible nitric oxide synthase

I3C

Indole-3-carbinol

Keap-1

Kelch-like ECH-associated protein 1

NF-κB

Nuclear factor kappa B

Nrf2

Nuclear factor E2 p45-related factor 2

PI3K

Phosphatidylinositol 3-kinase

PhIP

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine

PKC

Protein kinase C

ROS

Reactive oxygen species

SF

Sulforaphane

SXR

Steroid and xenobiotic receptor

TNFα

Tumor necrosis factor alpha

TPA

Tetradecanoyl phorbol acetate

TRE

TPA response element

XRE

Xenobiotic response element

References

  1. Agerbirk N, De Vos M, Kim J-H, Jander G (2008) Indole glucosinolate breakdown and its biological effects. Phytochem Rev (this issue)Google Scholar
  2. Aggarwal BB, Ichikawa H (2005) Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle 4:1201–1215PubMedGoogle Scholar
  3. Barcelo S, Gardiner JM, Gescher A, Chipman JK (1996) CYP2E1-mediated mechanism of anti-genotoxicity of the broccoli constituent sulforaphane. Carcinogenesis 17:277–282. doi:10.1093/carcin/17.2.277 PubMedCrossRefGoogle Scholar
  4. Bell MC, Crowley-Nowick P, Bradlow HL, Sepkovic DW, Schmidt-Grimminger D, Howell P et al (2000) Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecol Oncol 78:123–129. doi:10.1006/gyno.2000.5847 PubMedCrossRefGoogle Scholar
  5. Bjeldanes LF, Kim JY, Grose KR, Bartholomew JC, Bradfield CA (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci USA 88:9543–9547. doi:10.1073/pnas.88.21.9543 PubMedCrossRefGoogle Scholar
  6. Bradfield CA, Bjeldanes LF (1991) Modification of carcinogen metabolism by indolylic autolysis products of Brassica oleraceae. Adv Exp Med Biol 289:153–163PubMedGoogle Scholar
  7. Bradlow H, Michnovicz J, Telang N, Osborne M (1991) Effects of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice. Carcinogenesis 12:1571–1576. doi:10.1093/carcin/12.9.1571 PubMedCrossRefGoogle Scholar
  8. Brooks JD, Paton VG, Vidanes G (2001) Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol Biomarkers Prev 10:949–954PubMedGoogle Scholar
  9. Canene-Adams K, Lindshield BL, Wang S, Jeffery EH, Clinton SK, Erdman JW Jr (2007) Combinations of tomato and broccoli enhance antitumor activity in dunning r3327-h prostate adenocarcinomas. Cancer Res 67:836–843. doi:10.1158/0008-5472.CAN-06-3462 PubMedCrossRefGoogle Scholar
  10. Chen MF, Chen LT, Boyce HW Jr (1995) Cruciferous vegetables and glutathione: their effects on colon mucosal glutathione level and colon tumor development in rats induced by DMH. Nutr Cancer 23:77–83PubMedCrossRefGoogle Scholar
  11. Cho H, Seon M, Lee Y, Kim J, Kim J, Kim S et al (2008) 3, 3′-Diindolylmethane suppresses the inflammatory response to lipopolysaccharide in murine macrophages. J Nutr 138:17–23PubMedGoogle Scholar
  12. Cohen JH, Kristal AR, Stanford JL (2000) Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst 92:61–68. doi:10.1093/jnci/92.1.61 PubMedCrossRefGoogle Scholar
  13. Copple IM, Goldring CE, Kitteringham NR, Park BK (2008) The Nrf2-Keap1 defence pathway: role in protection against drug-induced toxicity. Toxicology 246:24–33PubMedGoogle Scholar
  14. Cornelis MC, El-Sohemy A, Campos H (2007) GSTT1 genotype modifies the association between cruciferous vegetable intake and the risk of myocardial infarction. Am J Clin Nutr 86:752–758PubMedGoogle Scholar
  15. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y et al (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 99:11908–11913. doi:10.1073/pnas.172398899 PubMedCrossRefGoogle Scholar
  16. Dinkova-Kostova AT, Liby KT, Stephenson KK, Holtzclaw WD, Gao X, Suh N (2005) Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc Natl Acad Sci USA 102:4584–4589. doi:10.1073/pnas.0500815102 PubMedCrossRefGoogle Scholar
  17. Dinkova-Kostova AT, Jenkins SN, Fahey JW, Ye L, Wehage SL, Liby KT et al (2006) Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Lett 240:243–252. doi:10.1016/j.canlet.2005.09.012 PubMedCrossRefGoogle Scholar
  18. Dinkova-Kostova AT, Fahey JW, Wade KL, Jenkins SN, Shapiro TA, Fuchs EJ et al (2007) Induction of the phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts. Cancer Epidemiol Biomarkers Prev 16:847–851. doi:10.1158/1055-9965.EPI-06-0934 PubMedCrossRefGoogle Scholar
  19. Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA 94:10367–10372. doi:10.1073/pnas.94.19.10367 PubMedCrossRefGoogle Scholar
  20. Faulkner K, Mithen R, Williamson G (1998) Selective increase of the potential anti-carcinogen 4-methylsulphinylbutyl glucosinolate in broccoli. Carcinogenesis 19:605–609. doi:10.1093/carcin/19.4.605 PubMedCrossRefGoogle Scholar
  21. Felton JS, Knize MG, Bennett LM, Malfatti MA, Colvin ME, Kulp KS (2004) Impact of environmental exposures on the mutagenicity/carcinogenicity of heterocyclic amines. Toxicology 198:135–145. doi:10.1016/j.tox.2004.01.024 PubMedCrossRefGoogle Scholar
  22. Fowke JH, Chung FL, Jin F, Qi D, Cai Q, Conaway C et al (2003) Urinary isothiocyanate levels, brassica, and human breast cancer. Cancer Res 63:3980–3986PubMedGoogle Scholar
  23. Galan MV, Kishan AA, Silverman AL (2004) Oral broccoli sprouts for the treatment of Helicobacter pylori infection: a preliminary report. Dig Dis Sci 49:1088–1090. doi:10.1023/B:DDAS.0000037792.04787.8a PubMedCrossRefGoogle Scholar
  24. Ganji V, Kafai MR (2004) Frequent consumption of milk, yogurt, cold breakfast cereals, peppers, and cruciferous vegetables and intakes of dietary folate and riboflavin but not vitamins B-12 and B-6 are inversely associated with serum total homocysteine concentrations in the US population. Am J Clin Nutr 80:1500–1507PubMedGoogle Scholar
  25. Gasper AV, Traka M, Bacon JR, Smith JA, Taylor MA, Hawkey CJ et al (2007) Consuming broccoli does not induce genes associated with xenobiotic metabolism and cell cycle control in human gastric mucosa. J Nutr 137:1718–1724PubMedGoogle Scholar
  26. Genkinger JM, Platz EA, Hoffman SC, Comstock GW, Helzlsouer KJ (2004) Fruit, vegetable, and antioxidant intake and all-cause, cancer, and cardiovascular disease mortality in a community-dwelling population in Washington County, Maryland. Am J Epidemiol 160:1223–1233PubMedGoogle Scholar
  27. Gills JJ, Jeffery EH, Matusheski NV, Moon RC, Lantvit DD, Pezzuto JM (2006) Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion. Cancer Lett 236:72–79. doi:10.1016/j.canlet.2005.05.007 PubMedCrossRefGoogle Scholar
  28. Ginn-Pease ME, Whisler RL (1996) Optimal NF-κB mediated transcriptional responses in Jurkat T cells exposed to oxidative stress are dependent on intracellular glutathione and costimulatory signals. Biochem Biophys Res Commun 226:695–702. doi:10.1006/bbrc.1996.1416 PubMedCrossRefGoogle Scholar
  29. Godtel-Armbrust U, Metzger A, Kroll U, Kelber O, Wojnowski L (2007) Variability in PXR-mediated induction of CYP3A4 by commercial preparations and dry extracts of St. John’s Wort. Naunyn Schmiedebergs Arch Pharmacol 375:377–382. doi:10.1007/s00210-007-0172-8 PubMedCrossRefGoogle Scholar
  30. Gopalakrishnan A, Kong AN (2008) Anticarcinogenesis by dietary phytochemicals: cytoprotection by Nrf2 in normal cells and cytotoxicity by modulation of transcription factors NF-kappaB and AP-1 in abnormal cancer cells. Food Chem Toxicol 46:1257–1270. doi:10.1016/j.fct.2007.09.082 PubMedCrossRefGoogle Scholar
  31. Haddad JJ, Safieh-Garabedian B, Saade NE, Lauterbach R (2002) Inhibition of glutathione-related enzymes augments LPS-mediated cytokine biosynthesis: involvement of an IkappaB/NF-kappaB-sensitive pathway in the alveolar epithelium. Int Immunopharmacol 2:1567–1583. doi:10.1016/S1567-5769(02)00117-0 PubMedCrossRefGoogle Scholar
  32. Hakooz N, Hamdan I (2007) Effects of dietary broccoli on human in vivo caffeine metabolism: a pilot study on a group of Jordanian volunteers. Curr Drug Metab 8:9–15. doi:10.2174/138920007779315080 PubMedCrossRefGoogle Scholar
  33. Hart AR, Kennedy H, Harvey I (2008) Pancreatic cancer: a review of the evidence on causation. Clin Gastroenterol Hepatol 6:275–282. doi:10.1016/j.cgh.2007.12.041 PubMedCrossRefGoogle Scholar
  34. Hecht SS, Chung FL, Richie JP Jr, Akerkar SA, Borukhova A, Skowronski L et al (1995) Effects of watercress consumption on metabolism of a tobacco-specific lung carcinogen in smokers. Cancer Epidemiol Biomarkers Prev 4:877–884PubMedGoogle Scholar
  35. Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C (2001) Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 276:32008–32015. doi:10.1074/jbc.M104794200 PubMedCrossRefGoogle Scholar
  36. Herrmann S, Seidelin M, Bisgaard HC, Vang O (2002) Indolo[3,2-b]carbazole inhibits gap junctional intercellular communication in rat primary hepatocytes and acts as a potential tumor promoter. Carcinogenesis 23:1861–1868. doi:10.1093/carcin/23.11.1861 PubMedCrossRefGoogle Scholar
  37. Hintze KJ, Wald KA, Zeng H, Jeffery EH, Finley JW (2003) Thioredoxin reductase in human hepatoma cells is transcriptionally regulated by sulforaphane and other electrophiles via an antioxidant response element. J Nutr 133:2721–2727PubMedGoogle Scholar
  38. Hoelzl C, Glatt H, Meinl W, Sontag G, Haidinger G, Kundi M et al (2008) Consumption of Brussels sprouts protects peripheral human lymphocytes against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and oxidative DNA-damage: results of a controlled human intervention trial. Mol Nutr Food Res 5:330–341. doi:10.1002/mnfr.200700406 CrossRefGoogle Scholar
  39. Hung H-C, Joshipura KJ, Jiang R (2004) Fruit and vegetable intake and risk of major chronic disease. J Natl Cancer Inst 96:1577–1584PubMedCrossRefGoogle Scholar
  40. Iskander K, Li J, Han S, Zheng B, Jaiswal AK (2006) NQO1 and NQO2 regulation of humoral immunity and autoimmunity. J Biol Chem 281:30917–30924. doi:10.1074/jbc.M605809200 PubMedCrossRefGoogle Scholar
  41. Jeffery EH, Keck AS (2008) Translating knowledge generated by epidemiological and in vitro studies into dietary cancer prevention. Mol Nutr Food Res 52:S7–S17PubMedCrossRefGoogle Scholar
  42. Juge N, Mithen R, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127. doi:10.1007/s00018-007-6484-5 PubMedCrossRefGoogle Scholar
  43. Kall MA, Vang O, Clausen J (1996) Effects of dietary broccoli on human in vivo drug metabolizing enzymes: evaluation of caffeine, oestrone and chlorzoxazone metabolism. Carcinogenesis 17:793–799. doi:10.1093/carcin/17.4.793 PubMedCrossRefGoogle Scholar
  44. Keck AS, Qiao Q, Jeffery EH (2003) Food matrix effects on bioactivity of broccoli-derived sulforaphane in liver and colon of F344 rats. J Agric Food Chem 51:3320–3327. doi:10.1021/jf026189a PubMedCrossRefGoogle Scholar
  45. Kensler TW, Chen JG, Egner PA, Fahey JW, Jacobson LP, Stephenson KK et al (2005) Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People’s Republic of China. Cancer Epidemiol Biomarkers Prev 14:2605–2613. doi:10.1158/1055-9965.EPI-05-0368 PubMedCrossRefGoogle Scholar
  46. Kim B, Kim R, Keum Y, Hebbar V, Shen G, Nair S et al (2003) Effects of glutathione on antioxidant response element-mediated gene expression and apoptosis elicited by sulforaphane. Cancer Res 63:7520–7525PubMedGoogle Scholar
  47. Kolonel LN, Hankin JH, Whittemore AS, Wu AH, Gallagher RP, Wilkens LR et al (2000) Vegetables, fruits, legumes and prostate cancer: a multiethnic case–control study. Cancer Epidemiol Biomarkers Prev 9:795–804PubMedGoogle Scholar
  48. Kyung JW, Taeg KK (2007) Sulforaphane suppresses lipopolysaccharide-induced cyclooxygenase-2 (COX-2) expression through the modulation of multiple targets in COX-2 gene promoter. Int Immunopharmacol 7:1776–1783. doi:10.1016/j.intimp. 2007.09.018 CrossRefGoogle Scholar
  49. Lampe JW, King IB, Li S, Grate MT, Barale KV, Chen C et al (2000) Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: changes in caffeine metabolite ratios in response to controlled vegetable diets. Carcinogenesis 21:1157–1162. doi:10.1093/carcin/21.6.1157 PubMedCrossRefGoogle Scholar
  50. Lauber SN, Ali S, Gooderham NJ (2004) The cooked food derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine is a potent oestrogen: a mechanistic basis for its tissue-specific carcinogenicity. Carcinogenesis 25:2509–2517. doi:10.1093/carcin/bgh268 PubMedCrossRefGoogle Scholar
  51. Lynn A, Collins A, Fuller Z, Hillman K, Ratcliffe B (2006) Cruciferous vegetables and colo-rectal cancer. Proc Nutr Soc 65:135–144. doi:10.1079/PNS2005486 PubMedCrossRefGoogle Scholar
  52. Mahéo K, Morel F, Lagouet S, Kramer H, Le Ferrec E, Ketterer B et al (1997) Inhibition of cytochromes P-450 and induction of glutathione S-transferases by sulforaphane in primary human and rat hepatocytes. Cancer Res 57:3649–3652PubMedGoogle Scholar
  53. Matusheski NV, Jeffery EH (2001) Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J Agric Food Chem 49:5743–5749. doi:10.1021/jf010809a PubMedCrossRefGoogle Scholar
  54. Matusheski NV, Juvik JA, Jeffery EH (2004) Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry 65:1273–1281. doi:10.1016/j.phytochem.2004.04.013 PubMedCrossRefGoogle Scholar
  55. McDanell R, McLean AE, Hanley AB, Heaney RK, Fenwick GR (1988) Chemical and biological properties of indole glucosinolates (glucobrassicins): a review. Food Chem Toxicol 26:59–70. doi:10.1016/0278-6915(88)90042-7 PubMedCrossRefGoogle Scholar
  56. Michaud DS, Spiegelman D, Clinton SK, Rimm EB, Willett WC, Giovannucci EL (1999) Fruit and vegetable intake and incidence of bladder cancer in a male prospective cohort. J Natl Cancer Inst 91:605–613. doi:10.1093/jnci/91.7.605 PubMedCrossRefGoogle Scholar
  57. Michnovicz JJ, Bradlow HL (1990) Induction of estradiol metabolism by dietary indole-3-carbinol in humans. J Natl Cancer Inst 82:947–949. doi:10.1093/jnci/82.11.947 PubMedCrossRefGoogle Scholar
  58. Moreno RL, Goosen T, Kent UM, Chung FL, Hollenberg PF (2001) Differential effects of naturally occurring isothiocyanates on the activities of cytochrome P450 2E1 and the mutant P450 2E1 T303A. Arch Biochem Biophys 391:99–110. doi:10.1006/abbi.2001.2390 PubMedCrossRefGoogle Scholar
  59. Mukherjee S, Gangopadhyay H, Das DK (2008) Broccoli: a unique vegetable that protects mammalian hearts through the redox cycling of the thioredoxin superfamily. J Agric Food Chem 56:609–617. doi:10.1021/jf0728146 PubMedCrossRefGoogle Scholar
  60. Munday R, Munday CM (2004) Induction of phase II detoxification enzymes in rats by plant-derived isothiocyanates: comparison of allyl isothiocyanate with sulforaphane and related compounds. J Agric Food Chem 52:1867–1871. doi:10.1021/jf030549s PubMedCrossRefGoogle Scholar
  61. Murashima M, Watanabe S, Zhou XG, Uehara M, Kurashige A (2004) Phase 1 study of multiple biomarkers for metabolism and oxidative stress after one-week intake of broccoli sprouts. Biofactors 22:271–275PubMedCrossRefGoogle Scholar
  62. Myzak MC, Dashwood RH (2006) Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer Lett 233:208–218. doi:10.1016/j.canlet.2005.02.033 PubMedCrossRefGoogle Scholar
  63. Myzak MC, Tong P, Dashwood WM, Dashwood R, Ho E (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med 232:227–234Google Scholar
  64. Nguyen T, Sherrat P, Pickett C (2003) Regulatory mechanism controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260. doi:10.1146/annurev.pharmtox.43.100901.140229 PubMedCrossRefGoogle Scholar
  65. Noyan-Ashraf MH, Sadeghinejad Z, Juurlink BH (2005) Dietary approach to decrease aging-related CNS inflammation. Nutr Neurosci 8:101–110. doi:10.1080/10284150500069470 PubMedCrossRefGoogle Scholar
  66. Osburn W, Karim H, Dolan P, Liu G, Yamamoto M, Huso D et al (2007) Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int J Cancer 121:1883–1891. doi:10.1002/ijc.22943 PubMedCrossRefGoogle Scholar
  67. Pantuck EJ, Pantuck CB, Garland WA, Min BH, Wattenberg LW, Anderson KE et al (1979) Stimulatory effect of brussels sprouts and cabbage on human drug metabolism. Clin Pharmacol Ther 25:88–95PubMedGoogle Scholar
  68. Pappa G, Strathmann J, Löwinger M, Bartsch H, Gerhäuser C (2007) Quantitative combination effects between sulforaphane and 3, 3′-diindolylmethane on proliferation of human colon cancer cells in vitro. Carcinogenesis 28:1471–1477. doi:10.1093/carcin/bgm044 PubMedCrossRefGoogle Scholar
  69. Petri N, Tannergren C, Holst B, Mellon FA, Bao Y, Plumb GW et al (2003) Absorption/metabolism of sulforaphane and quercetin, and regulation of phase II enzymes, in human jejunum in vivo. Drug Metab Dispos 31:805–813. doi:10.1124/dmd.31.6.805 PubMedCrossRefGoogle Scholar
  70. Prochaska HJ, Santamaria AB, Talalay P (1992) Rapid detection of inducers of enzymes that protect against carcinogens. Proc Natl Acad Sci USA 89:2394–2398. doi:10.1073/pnas.89.6.2394 PubMedCrossRefGoogle Scholar
  71. Rahman I (2005) Regulation of glutathione in inflammation and chronic lung diseases. Mutat Res 579:58–80. doi:10.1016/j.mrfmmm.2005.02.025 PubMedGoogle Scholar
  72. Rahman I, Biswas SK, Jimenez LA, Torres M, Forman HJ (2005) Glutathione, stress responses, and redox signaling in lung inflammation. Antioxid Redox Signal 7:42–59. doi:10.1089/ars.2005.7.42 PubMedCrossRefGoogle Scholar
  73. Rakoff-Nahoum S (2006) Why cancer and inflammation? Yale J Biol Med 79:123–130PubMedGoogle Scholar
  74. Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P et al (2001) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA 98:3410–3415. doi:10.1073/pnas.051618798 PubMedCrossRefGoogle Scholar
  75. Ritz SA, Wan J, Diaz-Sanchez D (2007) Sulforaphane-stimulated phase II enzyme induction inhibits cytokine production by airway epithelial cells stimulated with diesel extract. Am J Physiol Lung Cell Mol Physiol 292:L33–L39. doi:10.1152/ajplung.00170.2006 PubMedCrossRefGoogle Scholar
  76. Rogan EG (2006) The natural chemopreventive compound indole-3-carbinol: state of the science. In Vivo 20:221–228PubMedGoogle Scholar
  77. Sato K, Kawakami N, Ohtsu T, Tsutsumi A, Miyazaki S, Masumoto T et al (2004) Broccoli consumption and chronic atrophic gastritis among Japanese males: an epidemiological investigation. Acta Med Okayama 58:127–133PubMedGoogle Scholar
  78. Shertzer H, Sainsbury M (1991) Chemoprotective and hepatic enzyme induction properties of indole and indenoindole antioxidants in rats. Food Chem Toxicol 29:391–400. doi:10.1016/0278-6915(91)90079-M PubMedCrossRefGoogle Scholar
  79. Sparnins VL, Venegas PL, Wattenberg LW (1982) Glutathione S-transferase activity: enhancement by compounds inhibiting chemical carcinogenesis and by dietary constituents. J Natl Cancer Inst 68:493–496PubMedGoogle Scholar
  80. Steinkellner H, Rabot S, Freywald C, Nobis E, Scharf G, Chabicovsky M et al (2001) Effects of cruciferous vegetables and their constituents on drug metabolizing enzymes involved in the bioactivation of DNA-reactive dietary carcinogens. Mutat Res 480–481:285–297. doi:10.1016/S0027-5107(01)00188-9 PubMedGoogle Scholar
  81. Stoner G, Casto B, Ralston S, Roebuck B, Pereira C, Bailey G (2002) Development of a multi-organ rat model for evaluating chemopreventive agents: efficacy of indole-3-carbinol. Carcinogenesis 23:265–272. doi:10.1093/carcin/23.2.265 PubMedCrossRefGoogle Scholar
  82. Sundar SN, Kerekatte V, Equinozio CN, Doan VB, Bjeldanes LF, Firestone GL (2006) Indole-3-carbinol selectively uncouples expression and activity of estrogen receptor subtypes in human breast cancer cells. Mol Endocrinol 20:3070–3082. doi:10.1210/me.2005-0263 PubMedCrossRefGoogle Scholar
  83. Surh Y-J, Kundu JK, Na H-K, Lee J-S (2005) Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 135:2993S–3001SPubMedGoogle Scholar
  84. Talalay P, Fahey J (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131:3027S–3033SPubMedGoogle Scholar
  85. Talalay P, Fahey JW, Healy ZR, Wehage SL, Benedict AL, Min C et al (2007) Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation. Proc Natl Acad Sci USA 104:17500–17505. doi:10.1073/pnas.0708710104 PubMedCrossRefGoogle Scholar
  86. Thejass P, Kuttan G (2007) Immunomodulatory activity of Sulforaphane, a naturally occurring isothiocyanate from broccoli (Brassica oleracea). Phytomed 14:538–545. doi:10.1016/j.phymed.2006.09.013 CrossRefGoogle Scholar
  87. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62:5196–5203PubMedGoogle Scholar
  88. Thimmulappa RK, Scollick C, Traore K, Yates M, Trush MA, Liby KT et al (2006) Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-imidazolide. Biochem Biophys Res Commun 351:883–889. doi:10.1016/j.bbrc.2006.10.102 PubMedCrossRefGoogle Scholar
  89. Traka M, Mithen R (2008) Glucosinolates, isothiocyanates and human health. Phytochem Rev (this issue)Google Scholar
  90. Tucker KL, Selhub J, Wilson PW, Rosenberg IH (1996) Dietary pattern related to plasma folate and homocysteine concentrations in the Framingham Heart Study. J Nutr 126:3025–3031PubMedGoogle Scholar
  91. Vallejo F, Tomás-Barberán FA, Ferreres F (2004) Characterisation of flavonols in broccoli (Brassica oleracea L. var. italica) by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. J Chromatogr A 1054:181–193. doi:10.1016/j.chroma.2004.05.045 PubMedCrossRefGoogle Scholar
  92. Vang O, Jensen MB, Autrup H (1990) Induction of cytochrome P450IA1 in rat colon and liver by indole-3-carbinol and 5,6-benzoflavone. Carcinogenesis 11:1259–1263. doi:10.1093/carcin/11.8.1259 PubMedCrossRefGoogle Scholar
  93. Vang O, Frandsen H, Hansen KT, Sørensen JN, Sørensen H, Andersen O (2001a) Biochemical effects of dietary intakes of different broccoli samples. I. Differential modulation of cytochrome P-450 activities in rat liver, kidney, and colon. Metabolism 50:1123–1129. doi:10.1053/meta.2001.26743 PubMedCrossRefGoogle Scholar
  94. Vang O, Mortensen J, Andersen O (2001b) Biochemical effects of dietary intake of different broccoli samples. II. Multivariate analysis of contributions of specific glucosinolates in modulating cytochrome P-450 and antioxidant defense enzyme activities. Metabolism 50:1130–1135. doi:10.1053/meta.2001.26744 PubMedCrossRefGoogle Scholar
  95. Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H (1996) Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev 5:733–748PubMedGoogle Scholar
  96. Voorrips LE, Goldbohm RA, van Poppel G, Sturmans F, Hermus RJJ, van den Brandt PA (2000) Vegetable and fruit consumption and risks of colon and rectal cancer in a prospective cohort study. Am J Epidemiol 152:1081–1092. doi:10.1093/aje/152.11.1081 PubMedCrossRefGoogle Scholar
  97. Wallig MA, Heinz-Taheny KM, Epps DL, Gossman T (2005) Synergy among phytochemicals within crucifers: does it translate into chemoprotection? J Nutr 135:2972S–2977SPubMedGoogle Scholar
  98. Walters DG, Young PJ, Agus C, Knize MG, Boobis AR, Gooderham NJ et al (2004) Cruciferous vegetable consumption alters the metabolism of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in humans. Carcinogenesis 25:1659–1669. doi:10.1093/carcin/bgh164 PubMedCrossRefGoogle Scholar
  99. Wattenberg LW (1980) Inhibitors of chemical carcinogens. J Environ Pathol Toxicol 3:35–52PubMedGoogle Scholar
  100. Wild AC, Gipp JJ, Mulcahy RT (1998) Overlapping antioxidant response element and PMA response element sequences mediate basal and beta-naphtoflavone-induced expression of the human gamma-glutamylcysteine synthetase catalytic subunit gene. Biochem J 332:373–381PubMedGoogle Scholar
  101. Wong GY, Bradlow L, Sepkovic D, Mehl S, Mailman J, Osborne MP (1997) Dose-ranging study of indole-3-carbinol for breast cancer prevention. J Cell Biochem Suppl 28–29:111–116. doi:10.1002/(SICI)1097-4644(1997)28/29±<111::AID-JCB12>3.0.CO;2-KPubMedCrossRefGoogle Scholar
  102. Woo KJ, Kwon TK (2007) Sulforaphane suppresses lipopolysaccharide-induced cyclooxygenase-2 (COX-2) expression through the modulation of multiple targets in COX-2 gene promoter. Int Immunopharmacol 7:1776–1783. doi:10.1016/j.intimp. 2007.09.018 PubMedCrossRefGoogle Scholar
  103. Wu L, Noyan-Ashraf MH, Facci M, Wang R, Paterson PG, Ferrie A et al (2004) Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc Natl Acad Sci USA 101:7094–7099. doi:10.1073/pnas.0402004101 PubMedCrossRefGoogle Scholar
  104. Xie J, Itzkowitz SH (2008) Cancer in inflammatory bowel disease. World J Gastroenterol 14:378–389. doi:10.3748/wjg.14.378 PubMedCrossRefGoogle Scholar
  105. Xu C, Shen C, Chen G, Gelinas C, Kong AN (2005) Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene 24:4486–4495. doi:10.1038/sj.onc.1208656 PubMedCrossRefGoogle Scholar
  106. Yoon HY, Kang NI, Lee HK, Jang KY, Park JW, Park BH (2008) Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme. Biochem Pharmacol 75:2214–2223. doi:10.1016/j.bcp. 2008.02.029 PubMedCrossRefGoogle Scholar
  107. Yuan JM, Gago-Dominguez M, Castelao JE, Hankin JH, Ross RK, Yu MC (1998) Cruciferous vegetables in relation to renal cell carcinoma. Int J Cancer 77:211–216. doi:10.1002/(SICI)1097-0215(19980717)77:2<211::AID-IJC7>3.0.CO;2-TPubMedCrossRefGoogle Scholar
  108. Zhang Y, Callaway E (2002) High cellular accumulation of sulforaphane, a dietary anticarcinogen, is followed by rapid transporter-mediated export as a glutathione conjugate. Biochem J 364:301–307PubMedGoogle Scholar
  109. Zhang Y, Talalay P, Cho C-G, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89:2399–2403. doi:10.1073/pnas.89.6.2399 PubMedCrossRefGoogle Scholar
  110. Zhang SM, Hunter DJ, Rosner BA, Giovannucci EL, Colditz GA, Speizer FE et al (2000) Intakes of fruits, vegetables, and related nutrients and the risk of non-Hodgkin’s lymphoma among women. Cancer Epidemiol Biomarkers Prev 9:477–485PubMedGoogle Scholar
  111. Zhao J, Moore A, Redell J, Dash P (2007) Enhancing expression of Nrf2-driven genes protects the blood–brain barrier after brain injury. J Neurosci 27:10240–10248. doi:10.1523/JNEUROSCI.1683-07.2007 PubMedCrossRefGoogle Scholar
  112. Zhou C, Poulton E, Grun F, Bammler T, Blumberg B, Thummel K et al (2007) The dietary isothiocyanate sulforaphane is an antagonist of the human steroid and xenobiotic nuclear receptor. Mol Pharmacol 71:220–229. doi:10.1124/mol.106.029264 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.University of IllinoisUrbanaUSA

Personalised recommendations