Phytochemistry Reviews

, Volume 7, Issue 3, pp 579–592 | Cite as

Molecular pharming in cereal crops

Article

Abstract

There are many different agricultural expression systems that can be used for the large-scale production of recombinant proteins, but field-grown cereal crops are among the most attractive because recombinant proteins can be targeted to accumulate in the seed, and specifically in the endosperm, which has evolved naturally as a protein storage tissue. Within the developing endosperm, proteins are supplied with molecular chaperones and disulfide isomerases to facilitate folding and assembly, while the mature tissue is desiccated to prevent proteolytic degradation. Proteins expressed in cereal seeds can therefore remain stable for years in ambient conditions. Recent basic research has revealed a surprising diversity of protein targeting mechanisms in the endosperm, which can help to control post-translational modification and accumulation. Applied research and commercial development has seen several pharmaceutical proteins produced in cereals reach late stage preclinical development and the first clinical trials, with a number of companies now dedicated to developing cereal-based production platforms. In this review we discuss the basic science of molecular pharming in cereals, some of the lead product candidates, and challenges that remain to be addressed including the emerging regulatory framework for plant-made pharmaceuticals.

Keywords

Transgenic plant Cereal Maize Rice Barley Wheat Recombinant protein Plant made pharmaceutical Expression Regulation Biosafety 

Abbreviations

ER

Endoplasmic reticulum

GRAS

Generally regarded as safe

GM

Genetically modified

PMP

Plant made pharmaceutical

PMIP

Plant made industrial protein

Notes

Acknowledgements

European Union Framework 6 Programme—The Pharma-Planta Integrated Project. LSH-2002-1.2.5-2; Acciones Complementarias (MEC) BIO2005-24826-E; Generalitat de Catalunya 2005SGR118; the Ramon y Cajol Program of MEC, Spain. Center CONSOLIDER on Agrigenomics funded by the Spanish Ministry of Education and Science.

References

  1. Al-Ahmad H, Galili S, Gressel J (2004) Tandem constructs to mitigate transgene persistence: tobacco as a model. Mol Ecol 13:697–710PubMedCrossRefGoogle Scholar
  2. Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612PubMedCrossRefGoogle Scholar
  3. Arcalis E, Marcel S, Altmann F, Drakakaki G, Fischer R, Christou P, Stoger E (2004) Unexpected deposition patterns of recombinant proteins in post-ER compartments of wheat endosperm. Plant Physiol 136:3457–3466PubMedCrossRefGoogle Scholar
  4. Azzoni AR, Takahashi K, Woodard SL, Miranda EA, Nikolov ZL (2005) Purification of recombinant aprotinin produced in transgenic corn seed: separation from CTI utilizing ion-exchange chromatography. Braz J Chem Eng 22:323–330CrossRefGoogle Scholar
  5. Baez J, Russell D, Craig J (2000) Corn seed production of therapeutic proteins moves forward: one company’s experience. Biopharm 13:50–54Google Scholar
  6. Bhattramakki D, Kriz AL (1996) Nucleotide sequence analysis of a novel globulin1 null allele from the Illinois high protein strain of maize. Plant Mol Biol 32:1215–1219PubMedCrossRefGoogle Scholar
  7. Chikwamba RK, Scott MP, Mejia LB, Mason HS, Wang K (2003) Localization of a bacterial protein in starch granules of transgenic maize kernels. Proc Natl Acad Sci USA 100:11127–11132PubMedCrossRefGoogle Scholar
  8. Christou P, Stoger E, Twyman RM (2004) Monocot systems for molecular farming. In: Fischer R, Schillberg S (eds) Molecular farming: plant-made pharmaceuticals and technical proteins. Wiley, NY, pp 55–67Google Scholar
  9. Claparols MI, Bassie L, Miro B, Del Duca S, Rodriguez J, Christou P, Serafini-Fracassini D, Capell T (2004) Transgenic rice as a vehicle for the production of the industrial enzyme transglutaminase. Transgenic Res 13:195–199PubMedCrossRefGoogle Scholar
  10. Commandeur U, Twyman RM, Fischer R (2003) The biosafety of molecular pharming in plants. AgBiotechNet 5:110Google Scholar
  11. Daniell H, Streutfield SJ, Wycoff K (2001) Medical molecular pharming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226PubMedCrossRefGoogle Scholar
  12. Delaney DE (2002) Choice of crop species and development of transgenic product lines. In: Hood EE, Howard JA (eds) Plants as factories for protein production. Kluwer Academic Publishers, Dordrecht, pp 55–78Google Scholar
  13. Drakakaki G, Marcel S, Arcalis E, Altmann F, Gonzalez-Melendi P, Fischer R, Christou P, Stoger E (2006) The intracellular fate of a recombinant protein is tissue-dependent. Plant Physiol 141:578–586PubMedCrossRefGoogle Scholar
  14. Dunwell J (2005) Technologies for biological containment of GM and non-GM crops. Defra Contract CPEC 47. http://www.defra.gov.uk/science/project_data/DocumentLibrary/CB02036/CB02036_3629_FRP.doc. Accessed 25 Oct 2007
  15. Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domestic plants into their wild relatives. Annu Rev Ecol System 30:539–563CrossRefGoogle Scholar
  16. EMEA (2002) Points to consider on quality aspects of medicinal products containing active substances produced by stable transgene expression in higher plants (CPMP/BWP/764/02) [draft]. European Agency for the Evaluation of Medicinal Products, London, UKGoogle Scholar
  17. EMEA (2006) Guideline on the quality of biological active substances produced by stable transgene expression in higher plants. (EMEA/CHMP/BWP/48316/2006) [draft]. European Agency for the Evaluation of Medicinal Products, London, UKGoogle Scholar
  18. Farinas CS, Leite A, Miranda EA (2005) Aqueous extraction of maize endosperm: insights for recombinant protein hosts based on downstream processing. Process Biochem 40:3327–3336CrossRefGoogle Scholar
  19. Faye L, Boulaflous A, Benchabane M, Gomord V, Michaud D (2005) Protein modifications in the plant secretory pathway: current status and practical im-plications in molecular pharming. Vaccine 23:1770–1778PubMedCrossRefGoogle Scholar
  20. FDA (2002) Guidance for industry. Drugs, biologics, and medical devices derived from bioengineered plants for use in humans and animals. Food and Drug AdministrationGoogle Scholar
  21. Fischer R, Emans NJ, Twyman RM, Schillberg S (2003) Molecular farming of industrial proteins in plants. In: Fingerman M, Nagabhushanam R (eds) Recent advances in marine biotechnology, vol. 9 (biomaterials and bioprocessing). Science Publishers Inc., Enfield NH, pp 279–313Google Scholar
  22. Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158PubMedCrossRefGoogle Scholar
  23. Giddings G, Allison G, Brooks D, Carter A (2000) Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18:1151–1155PubMedCrossRefGoogle Scholar
  24. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100PubMedCrossRefGoogle Scholar
  25. Gomord V, Chamberlain P, Jefferis R, Faye L (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol 23:559–565PubMedCrossRefGoogle Scholar
  26. Gressel J (2002) Molecular biology of weed control. Taylor & Francis, LondonGoogle Scholar
  27. Guerrero-Andrade O, Loza-Rubio E, Olivera-Flores T, Fehervari-Bone T, Gomez-Lim MA (2006) Expression of the newcastle disease virus fusion protein in transgenic maize and immunological studies. Transgenic Res 15:455–463PubMedCrossRefGoogle Scholar
  28. Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22:1415–1422PubMedCrossRefGoogle Scholar
  29. Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78PubMedCrossRefGoogle Scholar
  30. Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey M, Flynn P, Register J, Marshall L, Bond D, Kulisek E, Kusnadi A, Evangelista R, Nikolov Z, Wooge C, Mehigh RJ, Hernan R, Kappel WK, Ritland D, Li CP, Howard JA (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed 3:291–306CrossRefGoogle Scholar
  31. Hood EE, Kusnadi A, Nikolov Z, Howard J (1999) Molecular pharming of industrial proteins from transgenic maize. In: Shahidi F, Kolodziejczyk P, Whitaker JR, Munguia AL, Fuller G (eds) Chemicals via higher plant bioengineering. Kluwer/Plenum, NY, pp 127–148Google Scholar
  32. Hood EE, Bailey MR, Beifuss K, Magallanes-Lundback M, Horn ME, Callaway E, Drees C, Delaney DE, Clough R, Howard JA (2003) Criteria for high-level expression of a fungal laccase gene in transgenic maize. Plant Biotechnol J 1:129–140PubMedCrossRefGoogle Scholar
  33. Hood EE (2004) Where, oh where has my protein gone? Trends Biotechnol 22:53–55PubMedCrossRefGoogle Scholar
  34. Hood EE, Love R, Lane J, Bray J, Clough R, Pappu K, Drees C, Hood KR, Yoon S, Ahmad A, Howard JA (2007) Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol J 5(6):709–719PubMedCrossRefGoogle Scholar
  35. Horvath H, Huang J, Wong O, Kohl E, Okita T, Kannangara CJ, von Wettstein D (2000) The production of recombinant proteins in transgenic barley grains. Proc Natl Acad Sci U S A 97:1914–1919PubMedCrossRefGoogle Scholar
  36. Jones MD, Brooks JS (1950) Effectiveness of distance and border rows in preventing outcrossing in corn, Oklahoma. Agricultural Experimental Station Bulletin, T-38Google Scholar
  37. Lamphear BJ, Streatfield SJ, Jilka JM, Brooks CA, Barker DK, Turner DD, Delaney DE, Garcia M, Wiggins B, Woodard SL, Hood EE, Tizard IR, Lawhorn B, Howard JA (2002) Delivery of subunit vaccines in maize seed. J Control Release 85:169–180PubMedCrossRefGoogle Scholar
  38. Lamphear BJ, Jilka JM, Kesl L, Welter M, Howard JA, Streatfield SJ (2004) A corn-based delivery system for animal vaccines: an oral transmissible gastroenteritis virus vaccine boosts lactogenic immunity in swine. Vaccine 22:2420–2424PubMedCrossRefGoogle Scholar
  39. Law RD, Russell DA, Thompson LC, Schroeder SC, Middle CM, Tremaine MT, Jury TP, Delannay X, Slater SC (2006) Biochemical limitations to high-level expression of humanized monoclonal antibodies in transgenic maize seed endosperm. Biochim Biophys Acta 1760:1434–1444PubMedGoogle Scholar
  40. Lin M, Rose-John S, Grötzinger J, Conrad U, Scheller J (2006) The functional expression of a biologically active fragment of soluble gp130 as an ELP fusion protein in transgenic plants: purification via inverse-transition-cycling. Biochem J 398:577–583PubMedCrossRefGoogle Scholar
  41. Ma JK-C, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science 268:716–719PubMedCrossRefGoogle Scholar
  42. Ma JK-C, Drake PMW, Christou P (2003) The production of recombinant pharmaceuticals in plants. Nat Rev Genet 4:794–805PubMedCrossRefGoogle Scholar
  43. Ma JK-C, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM (2005a) Molecular farming for new drugs and vaccines. Current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6:593–599PubMedCrossRefGoogle Scholar
  44. Ma JK-C, Chikwamba R, Sparrow P, Fischer R, Mahoney R, Twyman RM (2005b) Plant-derived pharmaceuticals—the road forward. Trends Plant Sci 10:580–585PubMedCrossRefGoogle Scholar
  45. Makinen K, Nuutila AM (2004) Barley seed as a production host for industrially important proteins. AgBiotechNet 6:1–8Google Scholar
  46. Mavituna AM (2005) Production of recombinant human serum albumin in transgenic plants and plant cells. Master of Science dissertation, Rheinisch-Westfälischen Technischen Hochschule, AachenGoogle Scholar
  47. Menkhaus TJ, Bai Y, Zhang C, Nikolov ZL, Glatz CE (2004) Considerations for the recovery of recombinant proteins from plants. Biotechnol Prog 20:1001–1014PubMedCrossRefGoogle Scholar
  48. Murphy DJ (2007) Improving containment strategies in biopharming. Plant Biotechnol J 5:555–569PubMedCrossRefGoogle Scholar
  49. Nandi S, Yalda D, Lu S, Nikolov Z, Misaki R, Fujiyama K, Huang N (2005) Process development and economic evaluation of recombinant human lactoferrin expressed in rice grain. Transgenic Res 14:237–249PubMedCrossRefGoogle Scholar
  50. Nicholson L, Gonzalez-Melendi P, van Dolleweerd C, Tuck H, Perrin Y, Ma JK-C, Fischer R, Christou P, Stoger E (2005) A recombinant multimeric immunoglobulin expressed in rice shows assembly-dependent subcellular localization in endosperm cells. Plant Biotechnol J 3:115–127PubMedCrossRefGoogle Scholar
  51. Nikolov ZL, Woodard SL (2004) Downstream processing of recombinant proteins from transgenic feedstock. Curr Opin Biotechnol 15:479–486PubMedCrossRefGoogle Scholar
  52. Nochi T, Takagi H, Yuki Y, Yang L, Masumura T, Mejima M, Nakanishi U, Matsumura A, Uozumi A, Hiroi T, Morita S, Tanaka K, Takaiwa F, Kiyono H (2007) Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc Natl Acad Sci U S A 104:10986–10991PubMedCrossRefGoogle Scholar
  53. Padidam M (2003) Chemically regulated gene expression in plants. Curr Opin Plant Biol 6:169–177PubMedCrossRefGoogle Scholar
  54. Perrin Y, Vaquero C, Gerrard I, Sack M, Drossard J, Stöger E, Christou P, Fischer R (2000) Transgenic pea seeds as bioreactors for the production of a single-chain Fv fragment (scFV) antibody used in cancer diagnosis and therapy. Mol Breed 6:345–352CrossRefGoogle Scholar
  55. Philip R, Darnowski DW, Maughan PJ, Vodkin LO (2001) Processing and localization of bovine β-casein expressed in transgenic soybean seeds under control of a soybean lectin expression cassette. Plant Sci 16:323–335CrossRefGoogle Scholar
  56. Qian B, Shen H, Liang W, Guo X, Zhang C, Wang Y, Li G, Wu A, Cao K, Zhang D (2007) Immunogenicity of recombinant hepatitis B virus surface antigen fused with preS1 epitopes expressed in rice seeds. Transgenic Res. doi:10.1007/s11248-007-9135-6 PubMedGoogle Scholar
  57. Ramessar K, Rademacher T, Sack M, Stadlmann J, Platis D, Stiegler G, Labrou N, Altmann F, Ma J, Stöger E, Capell T, Christou P Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proc Natl Acad Sci USA (in press)Google Scholar
  58. Ritala A, Nuutila AM, Aikasalo R, Kauppinen V, Tammisola J (2002) Measuring gene flow in the cultivation of transgenic barley. Crop Sci 42:278–285PubMedCrossRefGoogle Scholar
  59. Schillberg S, Emans N, Fischer R (2002) Antibody molecular pharming in plants and plant cells. Phytochem Rev 1:45–54CrossRefGoogle Scholar
  60. Schillberg S, Fischer R, Emans N (2003) Molecular pharming of antibodies in plants. Naturwissenschften 90:145–155Google Scholar
  61. Schunmann PHD, Coia G, Waterhouse PM (2002) Biopharming the SimpliREDTM HIV diagnostic reagent in barley, potato and tobacco. Mol Breed 9:113–121CrossRefGoogle Scholar
  62. Seon J-H, Szarka JS, Moloney MM (2002) A unique strategy for recovering recombinant proteins from molecular pharming: affinity capture on engineered oilbodies. J Plant Biotechnol 4:95–101Google Scholar
  63. Sparrow PAC, Irwin JA, Dale PJ, Twyman RM, Ma JKC (2007) Pharma-Planta: road testing the developing regulatory guidelines for plant-made pharmaceuticals. Transgenic Res 16:147–161PubMedCrossRefGoogle Scholar
  64. Sriraman R, Bardor M, Sack M, Vaquero C, Faye L, Fischer R, Finnern R, Lerouge P (2004) Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core-α(1,3)-fucose residues. Plant Biotechnol J 2:279–287PubMedCrossRefGoogle Scholar
  65. Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42:583–590PubMedCrossRefGoogle Scholar
  66. Stoger E, Parker M, Christou P, Casey R (2001) Pea legumin overexpressed in wheat endosperm assembles into an ordered paracrystalline matrix. Plant Physiol 125:1732–1742PubMedCrossRefGoogle Scholar
  67. Stoger E, Sack M, Fischer R, Christou P (2002a) Plantibodies: applications, advantages and bottlenecks. Curr Opin Biotechnol 13:161–166PubMedCrossRefGoogle Scholar
  68. Stoger E, Sack M, Perrin Y, Vaquero C, Torres E, Twyman RM, Christou P, Fischer R (2002b) Practical considerations for pharmaceutical antibody production in different crop systems. Mol Breed 9:149–158CrossRefGoogle Scholar
  69. Stoger E, Ma JK, Fischer R, Christou P (2005a) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:167–173PubMedCrossRefGoogle Scholar
  70. Stoger E, Sack M, Nicholson L, Fischer R, Christou P (2005b) Recent progress in plantibody technology. J Curr Pharm Des 11:2439–2457PubMedCrossRefGoogle Scholar
  71. Streatfield SJ (2005) Plant-based vaccines for animal health. Rev Sci Techn-Offic Int Epizoo 24:189–199Google Scholar
  72. Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15PubMedCrossRefGoogle Scholar
  73. Tada Y, Utsumi S, Takaiwa F (2003) Foreign gene products can be enhanced by introduction into storage protein mutants. Plant Biotechnol J 1:411–422PubMedCrossRefGoogle Scholar
  74. Takagi H, Hiroi T, Yang L, Tada Y, Yuki Y, Takamura K, Ishimitsu R, Kawauchi H, Kiyono H, Takaiwa F (2005) A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of Th2-mediated IgE responses. Proc Natl Acad Sci USA 102:17525–17530PubMedCrossRefGoogle Scholar
  75. Takaiwa F, Takagi H, Hirose S, Wakasa Y (2007) Endosperm tissue is good production platform for artificial recombinant proteins in transgenic rice. Plant Biotechnol J 5:84–92PubMedCrossRefGoogle Scholar
  76. Ting JT, Lee K, Ratnayake C, Platt KA, Balsamo RA, Huang AH (1996) Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents. Size and shape of intracellular oil bodies are determined by the oleosins/oils ratio. Planta 199:158–165PubMedCrossRefGoogle Scholar
  77. Torres E, Vaquero C, Nicholson L, Sack M, Stöger M, Drossard J, Christou P, Fischer R, Perrin Y (1999) Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res 8:441–449PubMedCrossRefGoogle Scholar
  78. Torres E, Gonzales-Melendi P, Stöger E, Shaw P, Twyman RM, Nicholson L, Vaquero C, Fischer R, Christou P, Perrin Y (2001) Native and artificial reticuloplasmins co-accumulate in distinct domains of the endoplasmic reticulum (ER) and in post-ER vesicles. Plant Physiol 127:1212–1223PubMedCrossRefGoogle Scholar
  79. Twyman RH, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular pharming in plants: host systems and expression technology. Trends Biotechnol 21:570–579PubMedCrossRefGoogle Scholar
  80. Twyman RM, Schillberg S, Fischer R (2005) Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs 10:185–218PubMedCrossRefGoogle Scholar
  81. Twyman RM, Schillberg S, Fischer R (2007) Molecular pharming antibodies in plants. In: Ranalli P (ed) Improvement of crop plants for industrial end uses. Springer, Berlin, pp 435–470CrossRefGoogle Scholar
  82. USDA—Animal and Plant Health Inspection Service (2003) Field testing and plants engineered to produce pharmaceutical and industrial compounds. Fed Regis 68(46), March 10Google Scholar
  83. Van Droogenbroeck B, Cao J, Stadlmann J, Altmann F, Colanesi S, Hillmer S, Robinson DG, Van Lerberge E, Terryn N, Van Montagu M, Liang M, Depicker A, De Jaeger G (2007) Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proc Natl Acad Sci U S A 104:1430–1435PubMedCrossRefGoogle Scholar
  84. Warzecha H, Mason HS (2003) Benefits and risks of antibody and vaccine production in transgenic plants. J Plant Physiol 160:755–764PubMedCrossRefGoogle Scholar
  85. Watson SA (1987) In: Watson SA, Ramstad PT (eds) Corn: chemistry and technology. Am. Assoc. Cereal Chemists, St. Paul, MN, pp 53–82Google Scholar
  86. Wolt JD, Wang K, Peterson RKD (2006) Assessing risk of unintended antigen occurrence in food: a case instance for maize-expressed LT-B. Hum Ecol Risk Assess 12:1–15CrossRefGoogle Scholar
  87. Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR, Delaney DE, McComas-Wagner JM, Mallubhotla HD, Hood EE, Gangott LJ, Tichy SE, Howard JA (2003) Maize-derived bovine trypsin: characterization of the first large-scale, commercial product from transgenic plants. Biotechnol Appl Biochem 38:123–130PubMedCrossRefGoogle Scholar
  88. Wright KE, Prior F, Sardana R, Altosaar I, Dudani AK, Ganz PR, Tackaberry ES (2001) Sorting of glycoprotein B from human cytomegalovirus to protein storage vesicles in seeds of transgenic tobacco. Transgenic Res 10:177–181PubMedCrossRefGoogle Scholar
  89. Wu J, Yu L, Li L, Hu J, Zhou J, Zhou X (2007) Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnol J 5:570–578PubMedCrossRefGoogle Scholar
  90. Xue GP, Patel M, Johnson JS, Smyth DJ, Vickers CE (2003) Selectable marker-free transgenic barley producing a high level of cellulase (1,4-beta-glucanase) in developing grains. Plant Cell Rep 21:1088–1094PubMedCrossRefGoogle Scholar
  91. Yamagata H, Tanaka K (1986) The site of synthesis and accumulation of rice storage proteins. Plant Cell Physiol 27:135–145Google Scholar
  92. Yang D, Guo F, Huang N, Watkins S (2003) Expression and localisation of human lysozyme in the endosperm of transgenic rice. Planta 216:597–603PubMedGoogle Scholar
  93. Yang L, Suzuki K, Hirose S, Wakasa Y, Takaiwa F (2007) Development of transgenic rice seed accumulating a major Japanese cedar pollen allergen (Cry j 1) structurally disrupted for oral immunotherapy. Plant Biotechnol J 5:815–826PubMedCrossRefGoogle Scholar
  94. Yusibov V, Rabindran S, Commandeur U, Twyman RM, Fischer R (2006) The potential of plant virus vectors for vaccine production. Drugs R D 7:203–217PubMedCrossRefGoogle Scholar
  95. Zhong GY, Peterson D, Delaney DE, Bailey M, Witcher DR, Register JC III, Bond D, Li C-P, Marshall L, Kulisek E, Ritland D, Meyer T, Hood EE, Howard JA (1999) Commercial production of aprotinin in transgenic maize seeds. Mol Breed 5:345–356CrossRefGoogle Scholar
  96. Zhu Z, Hughes KW, Huang L, Sun B, Liu C, Li Y (1994) Expression of human alfa-interferon cDNA in transgenic rice plants. Plant Cell Tiss Org Cul 36:197–204CrossRefGoogle Scholar
  97. Zuo J, Chua NH (2000) Chemical-inducible systems for regulated expression of plant genes. Curr Opin Biotechnol 11:146–151PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Koreen Ramessar
    • 1
  • Teresa Capell
    • 1
  • Paul Christou
    • 1
    • 2
  1. 1.Department de Produccio Vegetal I Ciencia ForestalUniversitat de LleidaLleidaSpain
  2. 2.ICREA (Institucio Catalana de Recerca I Estudis Avancats)Universitat de LleidaLleidaSpain

Personalised recommendations