Advertisement

Phytochemistry Reviews

, 7:467 | Cite as

Mechanisms of resistance to self-produced toxic secondary metabolites in plants

  • Supaart Sirikantaramas
  • Mami Yamazaki
  • Kazuki SaitoEmail author
Article

Abstract

Plants produce a variety of secondary metabolites to protect themselves from pathogens and herbivores and/or to influence the growth of neighbouring plants. Some of these metabolites are toxic to the producing cells when their target sites are present in the producing organisms. Therefore, a specific self-resistance mechanism must exist in these plants. Self-resistance mechanisms, including extracellular excretion, vacuolar sequestration, vesicle transport, extracellular biosynthesis, and accumulation of the metabolite in a non-toxic form, have been proposed thus far. Recently, a new mechanism involving mutation of the target protein of the toxic metabolite has been elucidated. We review here the mechanisms that plants use to prevent self-toxicity from the following representative compounds: cannabinoids, flavonoids, diterpene sclareol, alkaloids, benzoxazinones, phenylpropanoids, cyanogenic glycosides, and glucosinolates.

Keywords

Secondary metabolite Toxicity Self-resistance Detoxification 

Abbreviations

ABC

ATP-binding cassette

BOA

Benzoxazolin-2(3H)-one

CBCA

Cannabichromenic acid

DIBOA

2,4-Dihydroxy-2H-1,4-benzoxazin-3(4H)-one

DIMBOA

2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one

GSH

Glutathione

GST

Glutathione S-transferease

PDR

Pleiotropic drug resistance

THC

Tetrahydrocannabinol

THCA

Tetrahydrocannabinolic acid

Notes

Acknowledgement

Research in the authors’ laboratory was supported, in part, by the Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS), and by CREST of the Japan Science and Technology. SS was recipient of a post-doctoral fellowship from the JSPS hosted by MY.

References

  1. Ahmed MS, Ainley K, Parish JH, Hadi SM (1994) Free radical-induced fragmentation of proteins by quercetin. Carcinogenesis 15:1627–1630PubMedCrossRefGoogle Scholar
  2. Aimi N, Nishimura M, Miwa A, Hoshino H, Sakai S, Haginiwa J (1989) Pumiloside and deoxypumiloside; plausible intermediates of camptothecin biosynthesis. Tetrahedron Lett 30:4991–4994CrossRefGoogle Scholar
  3. Alcantara J, Bird DA, Franceschi VR, Facchini J (2005) Sanguinarine biosynthesis is associated with the endoplasmic reticulum in cultured opium poppy cells after elicitor treatment. Plant Physiol 138:173–183PubMedCrossRefGoogle Scholar
  4. Alfenito MR, Souer E, Godman CD, Buell R, Mol J, Koes R, Walbot V (1998) Functional complementation of anthocyanins sequestration in the vacuole by widely divergent glutathione S-transferase. Plant Cell 10:1135–1149PubMedCrossRefGoogle Scholar
  5. Bailey JA, Carter GA, Burden RS, Wain RL (1975) Control of rust diseases by diterpenes from Nicotiana glutinosa. Nature 255:328–329CrossRefGoogle Scholar
  6. Bajaj NP, McLean MJ, Waring MJ, Smekal E (1990) Sequence-selective, pH-dependent binding to DNA of benzophenanthridine alkaloids. J Mol Recognit 3:48–54PubMedCrossRefGoogle Scholar
  7. Barnes P, Putnam AR, Burke BA (1986) Allelopathy activity of rye (Secale cereal L.). In: Putnam AR, Tang CS (eds) The science of allelopathy. Wiley-Interscience, New York, pp 271–286Google Scholar
  8. Biggins JB, Onwueme KC, Thorson JS (2003) Resistance to enediyne antitumor antibiotics by CalC self-sacrifice. Science 301:1537–1541PubMedCrossRefGoogle Scholar
  9. Cicek M, Esen A (1998) Structure and expression of a dhurrinase (beta-glucosidase) from sorghum. Plant Physiol 116:1469–1478PubMedCrossRefGoogle Scholar
  10. Conn EE (1980) Cyanogenic glucosides. Annu Rev Plant Physiol 31:433–451CrossRefGoogle Scholar
  11. Cundliffe E (1989) How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol 43:207–233PubMedCrossRefGoogle Scholar
  12. Cutler HG, Reid W, Deletang J (1977) Plant growth inhibiting properties of deterpene from tobacco. Plant Cell Physiol 18:711–714Google Scholar
  13. Debeaujon I, Peeters AJ, Leon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–871PubMedCrossRefGoogle Scholar
  14. Deus-Neumann B, Zenk MH (1984) A highly selective alkaloid uptake system in vacuoles of higher plants. Planta 162:250–260CrossRefGoogle Scholar
  15. Deus-Neumann B, Zenk MH (1984) Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures. Planta Med 50:427–431PubMedCrossRefGoogle Scholar
  16. Deus-Neumann B, Zenk MH (1986) Accumulation of alkaloids in plant vacuoles does not involve an ion-trap mechanism. Planta 167:44–53CrossRefGoogle Scholar
  17. Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids – a gold mine for metabolic engineering. Trends Plant Sci 4:394–400PubMedCrossRefGoogle Scholar
  18. Facchini PJ, St-Pierre B (2005) Synthesis and trafficking of alkaloid biosynthetic enzymes. Curr Opin Plant Biol 8:657–666PubMedCrossRefGoogle Scholar
  19. Fairbairn JW (1972) The trichomes and glands of Cannabis sativa L. Bull Narc 23:29–33Google Scholar
  20. Glöckner C, Wolf H (1984) Mechanism of natural resistance to kirromycin-type antibiotics in actinomycetes. FEMS Microbiol Lett 25:121–124CrossRefGoogle Scholar
  21. Goodman CD, Casati P, Walbot V (2004) A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell 16:1812–1826PubMedCrossRefGoogle Scholar
  22. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent trasporters. Nat Rev Cancer 2:48–58PubMedCrossRefGoogle Scholar
  23. Govindachari TR, Viswanathan N (1972) Alkaloids of Mappia foetida. Phytochemistry 11:3529–3531CrossRefGoogle Scholar
  24. Gundlach H, Muller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89:2389–2393PubMedCrossRefGoogle Scholar
  25. Guo Z, Wagner GJ (1995) Biosynthesis of labdenediol and sclareol in cell-free extracts from trichomes of Nicatiana glutinosa. Planta 197:627–632CrossRefGoogle Scholar
  26. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504PubMedCrossRefGoogle Scholar
  27. Hartmann T, Kutchan TM, Strack D (2005) Evolution of metabolic diversity. Phytochemistry 66:1198–1199PubMedCrossRefGoogle Scholar
  28. Hopp W, Seitz HU (1987) The uptake of acylated anthocyanin into isolated vacuoles from a cell suspension culture of Daucus carota. Planta 170:74–85CrossRefGoogle Scholar
  29. Hopwood DA (2007) How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them? Mol Microbiol 63:937–940PubMedCrossRefGoogle Scholar
  30. Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878PubMedGoogle Scholar
  31. Huges MA (1999) Biosysthesis and degradation of cyanogenic glycosides. In: Barton D, Nakanishi K (eds) Comprehensive natural products chemistry, vol 1. Elsevier, Amsterdam, pp 881–895Google Scholar
  32. Hughes J, Mellows G, Soughton S (1980) How does Pseudomonas fluorescens, the producing organisms of the antibiotic pseudomonic acid A, avoid suicide? FEBS Lett 122:322–324PubMedCrossRefGoogle Scholar
  33. Husebye H, Chadchawan S, Winge P, Thangstad OP, Bones AM (2002) Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Plant Physiol 128:1180–1188PubMedCrossRefGoogle Scholar
  34. Inokoshi J, Tomoda H, Hashimoto H, Watanabe A, Takeshima H, Omura S (1994) Cerulenin-resistant mutants of Saccharomyces cerevisiae with an altered fatty acid synthase gene. Mol Gen Genet 244:90–96PubMedCrossRefGoogle Scholar
  35. Jasinski M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J, Boutry M (2001) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13:1095–1107PubMedCrossRefGoogle Scholar
  36. Julsing MK, Koulman A, Woerdenbag HJ, Quax WJ, Kayser O (2006) Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol Eng 23:265–279PubMedCrossRefGoogle Scholar
  37. Kakiuchi N, Hattori M, Ishii H, Namba T (1987) Effect of benzo[c]phenanthridine alkaloids on reverse transcriptase and their binding property to nucleic acids. Planta Med 53:22–27PubMedGoogle Scholar
  38. Kavallaris M, Kuo DY, Burkhart CA, Regl DL, Norris MD, Haber M, Horwitz SB (1997) Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 100:1282–1293PubMedCrossRefGoogle Scholar
  39. Kawaguchi A, Tomoda H, Okuda S, Awaya J, Omura S (1979) Cerulenin resistance in a cerulenin-producing fungus. Arch Biochem Biophys 197:30–35PubMedCrossRefGoogle Scholar
  40. Kim ES, Mahlberg PG (1997) Plastid development in disc cells of glandular trichomes of Cannabis (Cannabaceae). Mol cells 7:352–359PubMedGoogle Scholar
  41. Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37:104–114PubMedCrossRefGoogle Scholar
  42. Kjaer A (1976) Glucosinolates in the cruciferae. In: Vaughn JG, MacLeod AJ, Jones BMG (eds) The biology and chemistry of the cruciferae. Academic Press, London, pp 207–219Google Scholar
  43. Klein M, Weissenböck G, Dufaud A, Gaillard C, Kreuz K, Martinoia E (1996) Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside. J Biol Chem 271:29666–29671PubMedCrossRefGoogle Scholar
  44. Klein M, Martinoia E, Hoffmann-Thoma G, Weissenböck G (2000) A membrane-potential dependent ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides: regulation of glucuronide uptake by glutathione and its conjugates. Plant J 21:289–304PubMedCrossRefGoogle Scholar
  45. Klein M, Burla B, Martinoia E (2006) The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Lett 580:1112–1122PubMedCrossRefGoogle Scholar
  46. Kliebenstein DJ, Kroymann J, Mitchell-Olds T (2005) The glucosinolate-myrosinase system in an ecological and evolutionary context. Curr Opin Plant Biol 8:264–271PubMedCrossRefGoogle Scholar
  47. Kojima M, Poulton JE, Thayer SS, Conn EE (1979) Tissue distributions of dhurrin and of enzymes involved in its metabolism in leaves of Sorghum bicolor. Plant Physiol 63:1022–1028PubMedGoogle Scholar
  48. Koroleva OA, Davies A, Deeken R, Thorpe MR, Tomos AD, Hedrich R (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124:599–608PubMedCrossRefGoogle Scholar
  49. Li S, Yi Y, Wang Y, Zhang Z, Beasley RS (2002) Camptothecin accumulation and variations in camptotheca. Planta Med 68:1010–1016PubMedCrossRefGoogle Scholar
  50. Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, Debeaujon I, Klein M (2007a) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19:2023–2038PubMedCrossRefGoogle Scholar
  51. Marionova KI, Kleinschmidt K, Weissenböck G, Klein M (2007b) Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport. Plant Physiol 144:432–444CrossRefGoogle Scholar
  52. Marrs KA, Alfenito MR, Lloyd AM, Walbot V (1995) A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:397–400PubMedCrossRefGoogle Scholar
  53. Martinoia E, Massonneau A, Frangne N (2000) Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol 41:1175–1186PubMedCrossRefGoogle Scholar
  54. Mende P, Wink M (1987) Uptake of the quinolizidine alkaloid lupanine by protoplasts and isolated vacuoles of suspension-cultured Lupinus polyphyllus cell. Diffusion or carrier-mediated transport? J Plant Physiol 129:229–242Google Scholar
  55. Mendizabal VE, Adler-Graschinsky E (2007) Cannabinoids as therapeutic agents in cardiovascular disease: a tale of passions and illusions. Br J Pharmacol 151:427–440PubMedCrossRefGoogle Scholar
  56. Meyermans H, Morreel K, Lapierre C, Pollet B, De Bruyn A, Busson R, Herdewijn P, Devreese B, Van Beeumen J, Marita JM, Ralph J, Chen C, Burggraeve B, Van Montagu M, Messens E, Boerjan W (2000) Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. J Biol Chem 275:36899–36909PubMedCrossRefGoogle Scholar
  57. Morimoto S, Tanaka Y, Sasaki K, Tanaka H, Fukamizu T, Shoyama Y, Shoyama Y, Taura F (2007) Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in Cannabis leaf cells. J Biol Chem 282:20739–20751PubMedCrossRefGoogle Scholar
  58. Mueller LA, Goodman CD, Silady RA, Walbot V (2000) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration is a flavonoid-binding protein. Plant Physiol 123:1561–1570PubMedCrossRefGoogle Scholar
  59. Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8: 1821–1831PubMedCrossRefGoogle Scholar
  60. Otani M, Shitan N, Sakai K, Martinoia E, Sato F, Yazaki K (2005) Characterization of vacuolar transport of the endogenous alkaloid berberine in Coptis japonica. Plant Physiol 138:1939–1946PubMedCrossRefGoogle Scholar
  61. Pasqua G, Monacelli B, Valletta A (2004) Cellular localisation of the anti-cancer drug camptothecin in Camptotheca acuminata Decne (Nyssaceae). Eur J Histochem 48:321–327PubMedGoogle Scholar
  62. Pommier Y, Pourquier P, Fan Y, Strumberg D (1998) Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim Biophys Acta 1400:83–105PubMedGoogle Scholar
  63. Ranganathan S, Benetatos CA, Colarusso PJ, Dexter DW, Hudes GR (1998) Altered beta-tubulin isotype expression in paclitaxel-resistant human prostate carcinoma cells. Br J Cancer 77:562–566PubMedGoogle Scholar
  64. Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113PubMedCrossRefGoogle Scholar
  65. Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375PubMedCrossRefGoogle Scholar
  66. Riis L, Bellotti AC, Bonierbale M, O’Brien GM (2003) Cyanogenic potential in cassava and its influence on a generalist insect herbivore Cyrtomenus bergi (Hemiptera: Cydnidae). J Econ Entomol 96:1905–1914PubMedCrossRefGoogle Scholar
  67. Roos W, Evers S, Hieke M, Tschope M, Schumann B (1998) Shifts of intracellular pH distribution as a part of the signal mechanism leading to the elicitation of benzophenanthridine alkaloids. Phytoalexin biosynthesis in cultured cells of Eschscholtzia californica. Plant Physiol 118:349–364PubMedCrossRefGoogle Scholar
  68. Roytrakul S, Verpoorte R (2007) Role of vacuolar transporter proteins in plant secondary metabolism: Catharanthus roseus cell culture. Phytochem Rev 6:383–396CrossRefGoogle Scholar
  69. Rueff J, Gaspar J, Laires A (1995) Structural requirements for mutagenicity of flavonoids upon nitrosation. A structure-activity study. Mutagenesis 10:325–328PubMedCrossRefGoogle Scholar
  70. Saito K, Sudo H, Yamazaki M, Koseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Rep 20:267–271CrossRefGoogle Scholar
  71. Sakai K, Shitan N, Sato F, Ueda K, Yazaki K (2002) Characterization of berberine transport into Coptis japonica cells and the involvement of ABC protein. J Exp Bot 53:1879–1886PubMedCrossRefGoogle Scholar
  72. Sato H, Taguchi G, Fukui H, Tabata M (1992) Role of malic acid in solubilizing excess berberine accumulating in vacuoles of Coptis japonica. Phytochemistry 31:3451–3454CrossRefGoogle Scholar
  73. Scheiner-Bobis G (2001) Sanguinarine induces K+ outflow from yeast cells expressing mammalian sodium pumps. N-S Arch Pharmacol 7:1288–1289Google Scholar
  74. Schmeller T, Latz-Bruning B, Wink M (1997) Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry 44:257–266PubMedCrossRefGoogle Scholar
  75. Schulz M, Wieland I (1999) Variation in metabolism of BOA among species in various field communities – biochemical evidence for co-evolutionary processes in plant communities? Chemoecology 9:133–141CrossRefGoogle Scholar
  76. Schumacher HM, Gundlach H, Fiedler F, Zenk MH (1987) Elicitation of benzophenanthridine alkaloid synthesis in Eschscholzia cell cultures. Plant Cell Rep 6:410–413Google Scholar
  77. Sicker D, Frey M, Schulz M, Gierl A (2000) Role of natural benzoxazinones in the survival strategy of plants. Int Rev Cytol 198:319–346PubMedCrossRefGoogle Scholar
  78. Sicker D, Schneider B, Hennig L, Knop M, Schulz M (2001) Glycoside carbamates from benzoxazolin-2(3H)-one detoxification in extracts and exudates of corn roots. Phytochemistry 58:819–825PubMedCrossRefGoogle Scholar
  79. Sirikantaramas S, Taura F, Tanaka Y, Ishikawa Y, Morimoto S, Shoyama Y (2005) Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol 46:1578–158PubMedCrossRefGoogle Scholar
  80. Sirikantaramas S, Taura F, Morimoto S, Shoyama Y (2007a) Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology. Curr Pharm Biotech 8:237–243CrossRefGoogle Scholar
  81. Sirikantaramas S, Asano T, Sudo H, Yamazaki M, Saito K (2007b) Camptothecin: therapeutic potential and biotechnology. Curr Pharm Biotech 8:196–202CrossRefGoogle Scholar
  82. Sirikantaramas S, Sudo H, Asano T, Yamazaki M, Saito K (2007c) Transport of camptothecin in hairy roots of Ophiorrhiza pumila. Phytochemistry (in press)Google Scholar
  83. Stukkens Y, Bultreys A, Grec S, Trombik T, Vanham D, Boutry M (2005) NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiol 139:341–352PubMedCrossRefGoogle Scholar
  84. Takatani H, Oka M, Fukuda M, Narasaki F, Nakano R, Ikeda K, Terashi K, Kinoshita A, Soda H, Kanda T, Schneider E, Kohno S (1997) Gene mutation analysis and quantitation of DNA topoisomerase I in previously untreated non-small cell lung carcinomas. Jpn J Cancer Res 88:160–165PubMedGoogle Scholar
  85. Tattersall DB, Bak S, Jones PR, Olsen CE, Nielsen JK, Hansen ML, Hoj PB, Møller BL (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293:1826–1828PubMedCrossRefGoogle Scholar
  86. Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y, Morimoto S (2007) Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett 581:2929–2934PubMedCrossRefGoogle Scholar
  87. Thayer SS, Conn EE (1981) Subcellular localization of dhurrin beta-glucosidase and hydroxynitrile lyase in the mesophyll cells of sorghum leaf blades. Plant Physiol 67:617–622PubMedGoogle Scholar
  88. Thiara AS, Cundliffe E (1988) Cloning and characterization of a DNA gyrase B gene from Streptomyces sphaeroides that confers resistance to novobiocin. EMBO J 7:2255–2259PubMedGoogle Scholar
  89. Tomoda H, Kawaguchi A, Yasuhara T, Nakajima T, Omura S, Okuda S (1984) Cerulenin resistance in a cerulenin-producing fungus. III. Studies on active-site peptides of fatty acid synthetase from Cephalosporium caerulens. J Biochem 95:1713–1723Google Scholar
  90. Tsurutani J, Nitta T, Hirashima T, Komiya T, Uejima H, Tada H, Syunichi N, Tohda A, Fukuoka M, Nakagawa K (2002) Point mutations in the topoisomerase I gene in patients with non-small cell lung cancer treated with irinotecan. Lung Cancer 35:299–304PubMedCrossRefGoogle Scholar
  91. Ueda K, Cardarelli C, Gottesman MM, Pastan I (1987) Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci USA 84:3004–3008PubMedCrossRefGoogle Scholar
  92. van den Brüle S, Müller A, Fleming AJ, Smart CC (2002) The ABC transporter SpTUR2 confers resistance to the antifungal sclareol. Plant J 30:649–662PubMedCrossRefGoogle Scholar
  93. Vickery ML (1981) Sugar metabolism. In: Vickery ML, Vickery B (eds) Secondary plant metabolism. University Park Press, Baltimore, pp 32−41Google Scholar
  94. Villegas M, Sommarin M, Brodelius PE (2000) Effects of sodium orthovanadate on benzophenanthridine alkaloid formation and distribution in cell suspension cultures of Eschscholzia californica. Plant Physiol Biochem 38:233–241CrossRefGoogle Scholar
  95. von Rad U, Huttl R, Lottspeich F, Gierl A, Frey M (2001) Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant J 28:633–642CrossRefGoogle Scholar
  96. Wall ME, Wani MC, Cook C, Palmer K, McPhail A, Sim G (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890CrossRefGoogle Scholar
  97. Weiss D, Baumert A, Vogel M, Roos W (2006) Sanguinarine reductase, a key enzyme of benzophenanthridine detoxification. Plant Cell Environ 29:291–302PubMedCrossRefGoogle Scholar
  98. Windsor AJ, Reichelt M, Figuth A, Svatos A, Kroymann J, Kliebenstein DJ, Gershenzon J, Mitchell-Olds T (2005) Geographic and evolutionary diversification of glucosinolates among near relatives of Arabidopsis thaliana (Brassicaceae). Phytochemistry 66:1321–1333PubMedCrossRefGoogle Scholar
  99. Wink M, Roberts MF (1998) Compartmentation of alkaloid biosynthesis, transport and storage. In: Roberts MF, Wink M (eds) Alkaloids, biochemistry, ecology and medicinal application. Plenum Press, New York, pp 239–262Google Scholar
  100. Yamamoto K, Takase H, Abe K, Saito Y, Suzuki A (1993) Pharmacological studies on antidiarrheal effects of a preparation containing berberine and geranii herba. Nippon Yakurigaku Zasshi 101:169–175PubMedGoogle Scholar
  101. Yamauchi T, Shoyama Y, Aramaki H, Azuma T, Nishioka I (1967) Tetrahydrocannabinolic acid, a genuine substance of tetrahydrocannabinol. Chem Pharm Bull (Tokyo) 15:1075–1076Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Supaart Sirikantaramas
    • 1
  • Mami Yamazaki
    • 1
    • 2
  • Kazuki Saito
    • 1
    • 3
    Email author
  1. 1.Graduate School of Pharmaceutical SciencesChiba UniversityInage-kuJapan
  2. 2.CRESTJapan Science and Technology AgencyKawaguchiJapan
  3. 3.RIKEN Plant Science CenterTsurumi-kuJapan

Personalised recommendations