Phytochemistry Reviews

, Volume 7, Issue 1, pp 89–123 | Cite as

Secondary metabolites from species of the biocontrol agent Trichoderma

  • José Luis Reino
  • Raul F. Guerrero
  • Rosario Hernández-Galán
  • Isidro G. ColladoEmail author
Original Paper


Trichoderma species are free-living fungi that are highly interactive in root, soil and foliar environments and have been used successfully in field trials to control many crop pathogens. Structural and biological studies of the metabolites isolated from Trichoderma species are reviewed. This review, encompassing all the literature in this field up to the present and in which 269 references are cited, also includes a detailed study of the biological activity of the metabolites, especially the role of these metabolites in biological control mechanisms. Some aspects of the biosynthesis of these metabolites and related compounds are likewise discussed.


Trichoderma Biological control Phytopathogen Metabolites Toxins 


  1. Abe N, Murata T, Hirota A (1998a) Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol, from a fungus. Biosci Biotechnol Biochem 62:661–666Google Scholar
  2. Abe N, Murata T, Hirota A (1998b) Novel oxidized sorbicillin dimers with 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity from a fungus. Biosci Biotechnol Biochem 62:2120–2126Google Scholar
  3. Abe N, Murata T, Yamamoto K, Hirota A (1999) Bisorbibetanone, a novel oxidized sorbicillin dimer, with 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity from a fungus. Tetrahedron Lett 40:5203–5206Google Scholar
  4. Abe N, Yamamoto K, Hirota A (2000a) Novel fungal metabolites, demethylsorbicillin and oxosorbicillinol, isolated from Trichoderma sp. USF-2690. Biosci Biotechnol Biochem 64:620–622Google Scholar
  5. Abe N, Sugimoto O, Tanji K, Hirota A (2000b) Identification of the quinol metabolite “sorbicillinol”, a key intermediate postulated in bisorbicillinoid biosynthesis. J Am Chem Soc 122:12606–12607Google Scholar
  6. Abe N, Sugimoto O, Arakawa T, Tanji K, Hirota A (2001) Sorbicillinol, a key intermediate of bisorbicillinoid biosynthesis in Trichoderma sp. USF-2690. Biosci Biotechnol Biochem 65:2271–2279PubMedGoogle Scholar
  7. Abe N, Arakawa T, Hirota A (2002a) The biosynthesis of bisvertinolone: evidence for oxosorbicillinol as a direct precursor. Chem Commun 3:204–205Google Scholar
  8. Abe N, Arakawa T, Yamamoto K, Hirota A (2002b) Biosynthesis of bisorbicillinoid in Trichoderma sp. USF-2690; evidence for the biosynthetic pathway, via sorbicillinol, of sorbicillin, bisorbicillinol, bisorbibutenolide, and bisorbicillinolide. Biosci Biotechnol Biochem 66:2090–2099Google Scholar
  9. Abrahamsson S, Nilsson B (1966) Molecular structure of trichodermin. Acta Chem Scand 20:1044–1052Google Scholar
  10. Adachi T, Aoki H, Osawa T, Namiki M, Yamane T, Ashida T (1983) Structure of trichodermaol, antibacterial substance produced in combined culture of Trichoderma sp. with Fusarium oxysporum or Fusarium solani. Chem Lett 6:923–926Google Scholar
  11. Adams PM, Hanson JR (1972) Sesquiterpenoid metabolites of Trichoderma polysporum and T. sporulosum. Phytochemistry 11:423Google Scholar
  12. Agarwal SK, Singh SS, Verma S, Kumar S (2000) Antifungal activity of anthraquinone derivatives from Rheum emodi. J Ethnopharmacol 72:43–46PubMedGoogle Scholar
  13. Aldridge DC, Turner WB, Geddes AJ, Sheldrick B (1975) Demethoxyviridin and demethoxyviridiol, new fungal metabolites. J Chem Soc Perkin Trans 1(10):943–945Google Scholar
  14. Ali S, Watson MS, Osborne RH (2004) The stimulant cathartic, emodin, contracts the rat isolated ileum by triggering release of endogenous acetylcholine. Auton Autacoid Pharmacol 24:103–105PubMedGoogle Scholar
  15. Almassi F, Ghisalberti EL, Narbey MJ, Sivasithamparam K (1991) New antibiotics from strains of Trichoderma harzianum. J Nat Prod 54:396–402Google Scholar
  16. Amagata T, Usami Y, Minoura K, Ito T, Numata A (1998) Cytotoxic substances produced by a fungal strain from a sponge: physico-chemical properties and structures. J Antibiot 51:33–40PubMedGoogle Scholar
  17. Anderson EA, Alexanian EJ, Sorensen EJ (2004) Synthesis of the furanosteroidal antibiotic viridin. Angew Chem Int Ed 43:1998–2001Google Scholar
  18. Andrade R, Ayer WA, Mebe PP (1992) The metabolites of Trichoderma longibrachiatum. Part 1. Isolation of the metabolites and the structure of trichodimerol. Can J Chem 70:2526–2535Google Scholar
  19. Andrade R, Ayer WA, Trifonov LS (1996) The metabolites of Trichoderma longibrachiatum. Part II. The structures of trichodermolide and sorbiquinol. Can J Chem 74:371–379Google Scholar
  20. Andrade R, Ayer WA, Trifonov LS (1997) The metabolites of Trichoderma longibrachiatum. III. Two new tetronic acids: 5-hydroxyvertinolide and bislongiquinolide. Aust J Chem 50:255–257Google Scholar
  21. Astudillo L, Schmeda-Hirschmann G, Soto R, Sandoval C, Sfonso C, Gonzalez MJ, Kijjoa A (2000) Acetophenone derivatives from Chilean isolated of Trichoderma pseudokoningii Rifai. World J Microbiol Biotechnol 16:585–587Google Scholar
  22. Augustiniak H, Forche E, Reichenbach H, Wray V, Graefe U, Hoefle G (1991) Isolation and structure elucidation of ergokonin A and B; two new antifungal sterol antibiotics from Trichoderma koningii. Liebigs Ann Chem 4:361–366Google Scholar
  23. Auvin-Guette C, Rebuffat S, Prigent Y, Bodo B (1992) Trichogin A IV, an 11-residue lipopeptaibol from Trichoderma longibrachiatum. J Am Chem Soc 114:2170–2174Google Scholar
  24. Auvin-Guette C, Rebuffat S, Vuidepot I, Massias M, Bodo B (1993) Structural elucidation of trikoningins KA and KB, peptaibols from Trichoderma koningii. J Chem Soc Perkin Trans 1(2):249–255Google Scholar
  25. Baldwin JE, Adlington RM, Chondrogianni J, Edenborough MS, Keeping JW, Ziegler CB (1985) Structure and synthesis of new cyclopentenyl isonitriles from Trichoderma hamatum (Bon.) Bain. aggr. HLX 1379. J Chem Soc Chem Commun 12:816–817Google Scholar
  26. Baldwin JE, Aldous DJ, Chan C, Harwood LM, O’Neil IA, Peach JM (1989) The total synthesis of (±)-isonitrin B (deoxytrichoviridin). Synlett 1:9–14Google Scholar
  27. Baldwin JE, O’Neil IA, Russell AT (1991) Isonitrin A: revision of the structure and total synthesis in racemic form. Synlett 8:551–552Google Scholar
  28. Baldwin JE, Adlington RM, O’Neil IA, Russell AT, Smith ML (1996) The total synthesis of (±)-trichoviridin. Chem Commun 1:41–42Google Scholar
  29. Bamburg JR, Strong FM (1969) Mycotoxins of the trichothecane family produced by Fusarium tricinctum and Trichoderma lignorum. Phytochemistry 8:2405–2410Google Scholar
  30. Barnes-Seeman D, Corey EJ (1999) A two-step total synthesis of the natural pentacycle trichodimerol, a novel inhibitor of TNF-alpha production. Org Lett 1:1503–1504PubMedGoogle Scholar
  31. Berestetskii OA, Patyka VF, Nadkernichnyi SP (1976) Phytotoxic properties of fungi of the Trichoderma Pers. Genus. Vopr. Ekol. Fiziol. Mikroorg., Ispol’z. Sel’sk. Khoz.: 56–60 (Chem. Abstr. 1978, 88:148647)Google Scholar
  32. Berg A, Grigoriev PA, Degenkolb T, Neuhof T, Haertl A, Schlegel B, Graefe U (2003) Isolation, structure elucidation and biological activities of trichofumins A, B, C and D, new 11 and 13mer peptaibols from Trichoderma sp. HKI 0276. J Pept Sci 9:810–816PubMedGoogle Scholar
  33. Berg A, Wangun HVK, Nkengfack AE, Schlegel B (2004) Lignoren, a new sesquiterpenoid metabolite from Trichoderma lignorum HKI 0257. J Basic Microbiol 44:317–319PubMedGoogle Scholar
  34. Bernillon J, Favre-Bonvin J, Pommier MT, Arpin N (1989) First isolation of (+)-epipentenomycin I from Peziza sp. carpophores. J Antibiot 42:1430–1432PubMedGoogle Scholar
  35. Betina V, Kubela Ŝ (1987) Uncoupling effect on fungal hydroxyanthraquinones on mitochondrial oxidative phosphorylation. Chem Biol Interact 62:179–186PubMedGoogle Scholar
  36. Betina V, Sedmera P, Vokoun J, Podojil M (1986) Anthraquinone pigments from a conidiating mutant of Trichoderma viride. Experientia 42:196–197Google Scholar
  37. Blight MM, Grove JF (1986) Viridin. Part 8. Structures of the analogs virone and wortmannolone. J Chem Soc Perkin Trans 1(7):1317–1322Google Scholar
  38. Boros C, Dix A, Katz B, Vasina Y, Pearce C (2003) Isolation and identification of cissetin, a setin-like antibiotic with a novel cis-octalin ring fusion. J Antibiot 56:862–865PubMedGoogle Scholar
  39. Boyd RK, McAlees AJ, Taylor A, Walter JA (1991) Isolation of new isocyanide metabolites of Trichoderma hamatum as their (η5-pentamethylcyclopentadienyl)- or (η5-ethyltetramethylcyclopentadienyl)bis(μ-thiocyanato)rhodium complexes. J Chem Soc Perkin Trans 1(6):1461–1465Google Scholar
  40. Brasier CM (1975) Stimulation of sex organ formation in Phytophthora by antagonistic species of Trichoderma. I. The effect in vitro. New Phytol 74:183–194Google Scholar
  41. Brewer D, Gabe EJ, Hanson AW, Taylor A, Keeping JW, Thaller V, Das BC (1979) Isonitrile acids from cultures of the fungus Trichoderma hamatum (Bon.) Bain. aggr., x-ray structure. J Chem Soc Chem Commun 23:1061–1062Google Scholar
  42. Brewer D, Feicht A, Taylor A, Keeping JW, Taha AA, Thaller V (1982) Ovine ill-thrift in Nova Scotia. 9. Production of experimental quantities of isocyanide metabolites of Trichoderma hamatum. Can J Microbiol 28:1252–1260PubMedGoogle Scholar
  43. Brewer D, Calder FW, Jones GA, Tanguay D, Taylor A (1986) Effect of nickelous and other metal ions on the inhibition of rumen bacterial metabolism by 3-(3-isocyanocyclopent-2-enylidene)propionic acid and related isocyanides. Appl Environ Microbiol 51:138–142PubMedGoogle Scholar
  44. Brewer D, Mason FG, Taylor A (1987) The production of alamethicins by Trichoderma spp. Can J Microbiol 33:619–625PubMedGoogle Scholar
  45. Brewer D, Parkinson VO, Taylor A (1990) A note on the antibacterial properties of 3-(3’-isocyanocyclopent-2’-enylidene)propionic acid in the ovine rumen. J Appl Bacteriol 69:701–704PubMedGoogle Scholar
  46. Brian PW (1944) Production of gliotoxin by Trichoderma viride. Nature 154:667–668Google Scholar
  47. Brian PW, McGowan JC (1945) Viridin. A highly fungistatic substance produced by Trichoderma viride. Nature 156:144–145Google Scholar
  48. Brian PW, Curtis PJ, Hemming HG, Norris GLF (1957) Wortmannin, an antibiotic produced by Penicillium wortmanni. Brit Mycol Soc Trans 40:365–368Google Scholar
  49. Brown AG, Smale TC, King TJ, Hasenkamp R, Thompson RH (1976) Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. J Chem Soc Perkin Trans 1(11):1165–1170Google Scholar
  50. Brueckner H, Graf H, Bokel M (1984) Paracelsin; characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mold Trichoderma reesei. Part B. Experientia 40:1189–1197Google Scholar
  51. Brueckner H, Koenig WA, Aydin M, Jung G (1985) Trichotoxin A40. Purification by counter-current distribution and sequencing of isolated fragments. Biochim Biophys Acta 827:51–62Google Scholar
  52. Burmeister HR (1974) Antibiotic equisetin. US Pat. Appl. 467548, 6 May 1974Google Scholar
  53. Burton HS (1950) Antibiotics from Aspergillus melleus. Nature 165:274–275PubMedGoogle Scholar
  54. Cane DE, Sohng JK (1994) Inhibition of glyceraldehyde-3-phosphate dehydrogenase by pentalenolactone. 2. Identification of the site of alkylation by tetrahydropentalenolactone. Biochemistry 33:6524–6530PubMedGoogle Scholar
  55. Capon RJ, Ratnayake R, Stewart M, Lacey E, Tennant S, Gill JH (2005) Aspergillazines A-E: novel heterocyclic dipeptides from an Australian strain of Aspergillus unilateralis. Org Biomol Chem 3:123–129PubMedGoogle Scholar
  56. Cardoza RE, Hermosa MR, Vizcaino JA, Sanz L, Monte E, Gutierrez S (2005) Secondary metabolites produced by Trichoderma and their importance in the biocontrol process. In: Mellado-Durán E, Barredo JL (eds) Microorganisms for industrial enzymes and biocontrol. Research Signpost, India, p 207Google Scholar
  57. Chang CWJ (2000) Naturally occurring isocyano/isothiocyanato and related compounds. Prog Chem Org Nat Prod 80:1–186Google Scholar
  58. Choi SU, Choi EJ, Kim KH, Kim NY, Kwon BM, Kim SU, Bok SH, Lee SY, Lee CO (1996) Cytotoxicity of trichothecenes to human solid tumor cells in vitro. Arch Pharmacol Res 19:6–11Google Scholar
  59. Chukwujekwu JC, Coombes PH, Mulholland DA, van Staden J (2006). Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalis. J Bot 72:295–297Google Scholar
  60. Claydon N, Allan M, Hanson JR, Avent AG (1987) Antifungal alkyl pyrones of Trichoderma harzianum. Trans Br Mycol Soc 88:503–513Google Scholar
  61. Claydon N, Hanson JR, Truneh A, Avent AG (1991) Harzianolide, a butenolide metabolite from cultures of Trichoderma harzianum. Phytochemistry 30:3802–3803Google Scholar
  62. Coats JH, Meyer CE, Pyke TR (1971) Antibiotic dermadin. US Patent 3627882, 14 Dec 1971Google Scholar
  63. Cole RJ, Kirksey JW, Springer JP, Clardy J, Cutler HG, Garren KH (1975) Desmethoxyviridiol, a new toxin from Nodulisporium hinnuleum. Phytochemistry 14:1429–1432Google Scholar
  64. Collins RP, Halim AF (1972) Characterization of the major aroma constituent of the fungus Trichoderma viride. J Agric Food Chem 20:437–438Google Scholar
  65. Corley DG, Miller-Wideman M, Durley RC (1994) Isolation and structure of harzianum A: a new trichothecene from Trichoderma harzianum. J Nat Prod 57:422–425PubMedGoogle Scholar
  66. Cutler SJ, Cutler HG (1999) Biologically active natural products: pharmaceuticals. CRC Press, New YorkGoogle Scholar
  67. Cutler HG, Jacyno JM (1991) Biological activity of (-)-harzianopyridone isolated from Trichoderma harzianum. Agric Biol Chem 55:2629–2631Google Scholar
  68. Cutler HG, Himmelsbach DS, Arrendale RF, Cole PD, Cox RH (1989) Koninginin A: a novel plant growth regulator from Trichoderma koningii. Agric Biol Chem 53:2605–2611Google Scholar
  69. Cutler HG, Himmelsbach DS, Yagen B, Arrendale RF, Jacyno JM, Cole PD, Cox RH (1991a) Koninginin B: a biologically active congener of koninginin A from Trichoderma koningii. J Agric Food Chem 39:977–980Google Scholar
  70. Cutler HG, Jacyno JM, Phillips RS, vonTersch RL, Cole PD, Montemurro N (1991b) Cyclonerodiol from a novel source, Trichoderma koningii: plant growth regulatory activity. Agric Biol Chem 55:243–244Google Scholar
  71. Cutler HG, Cutler SJ, Ross SA, El Sayed K, Dugan FM, Bartlett MG, Hill AA, Hill RA, Parker SR (1999) Koninginin G, a new metabolite from Trichoderma aureoviride. J Nat Prod 62:137–139PubMedGoogle Scholar
  72. D’Mello JPF, Porter JK, Macdonald AMC, Placonta CM (1997) Fusarium mycotoxins. In: D’Mello JPF (ed) Handbook of plant and fungal toxicants. CRC Press, New York, p 287Google Scholar
  73. De Stefano S, Nicoletti R (1999) Pachybasin and chrysophanol, two anthraquinones produced by the fungus Trichoderma aureoviride. Il Tabacco 7:21–24Google Scholar
  74. Dickinson JM, Hanson JR, Hitchcock PB, Claydon N (1989) Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J Chem Soc Perkin Trans 1(11):1885–1887Google Scholar
  75. Dodge JA, Sato M, Vlahos CJ (1995) Inhibition of phosphatidylinositol 3-kinase with viridin and analogs thereof. Eur. Patent Appl. 648492, 19 Apr 1995Google Scholar
  76. Donnelly DMX, Sheridan MH (1986) Anthraquinones from Trichoderma polysporum. Phytochemistry 25:2303–2304Google Scholar
  77. Dunlop RW, Simon A, Sivasithamparam K, Ghisalberti EL (1989) An antibiotic from Trichoderma koningii active against soilborne plant pathogens. J Nat Prod 52:67–74Google Scholar
  78. Edenborough MS, Herbert RB (1988) Naturally occurring isocyanides. Nat Prod Rep 5:229–245PubMedGoogle Scholar
  79. Ehrlich KC, Daigle KW (1987) Protein synthesis inhibition of 8-oxo-12,13-epoxytrichothecenes. Biochim Biophys Acta Gen Subj 923:206–213Google Scholar
  80. El Hajji M, Rebuffat S, Lecommandeur D, Bodo B (1987) Isolation and sequence determination of trichorzianines A antifungal peptides from Trichoderma harzianum. Int J Pept Protein Res 29:207–215PubMedCrossRefGoogle Scholar
  81. Elliott JD, Hetmanski M, Palfreyman MN, Purcell N, Stoodley RJ (1983) Syntheses of (±)- and (-)-O-pentenomycin I. Tetrahedron Lett 24:965–968Google Scholar
  82. Endo A (1985) Compactin (ML-236B) and related compounds as potential cholesterol-lowering agents that inhibit HMG-CoA reductase. J Med Chem 28:401–405PubMedGoogle Scholar
  83. Endo A, Hasumi K, Sakai K, Kanbe T (1985) Specific inhibition of glyceraldehyde-3-phosphate dehydrogenase by koningic acid (heptelidic acid). J Antibiot 38:920–925PubMedGoogle Scholar
  84. Endo A, Hasumi K, Yamada A, Shimoda R, Takeshima H (1986) The synthesis of compactin (ML-236B) and monacolin K in fungi. J Antibiot 39:1609–1610PubMedGoogle Scholar
  85. Esumi T, Iwabuchi Y, Irie H, Hatakeyama S (1998) Synthesis of viridiofungin A trimethyl ester and determination of the absolute structure of viridiofungin A. Tetrahedron Lett 39:877–880Google Scholar
  86. Evidente A, Randazzo G, Ballio A (1986) Structure determination of seiridin and isoseiridin, phytotoxic butenolides from culture filtrate of Seiridium cardinale. J Nat Prod 49:593–601Google Scholar
  87. Evidente A, Cabras A, Maddau L, Serra S, Andolfi A, Motta A (2003) Viridepyronone, a new antifungal 6-substituted 2H-pyran-2-one produced by Trichoderma viride. J Agric Food Chem 51:6957–6960PubMedGoogle Scholar
  88. Faull JL, Graeme-Cook KA, Pilkington BL (1994) Production of an isonitrile antibiotic by an UV-induced mutant of Trichoderma harzianum. Phytochemistry 36:1273–1276PubMedGoogle Scholar
  89. Fujimoto H, Satoh Y, Yamaguchi K, Yamazaki M (1998) Monoamine oxidase inhibitory constituents from Anixiella micropertusa. Chem Pharm Bull 46:1506–1510Google Scholar
  90. Fujita T, Takaishi Y, Okamura A, Fujita E, Fuji K, Hiratsuka N, Komatsu M, Arita I (1981) New peptide antibiotics, trichopolyns I and II, from Trichoderma polysporum. J Chem Soc Chem Commun 12:585–587Google Scholar
  91. Fujita T, Takaishi Y, Takeda Y, Fujiyama T, Nishi T (1984) Fungal metabolites. II. Structural elucidation of minor metabolites, valinotricin, cyclonerodiol oxide, and epicyclonerodiol oxide, from Trichoderma polysporum. Chem Pharm Bull 32:4419–4425Google Scholar
  92. Fujita T, Wada S, Iida A, Nishimura T, Kanai M, Toyama N (1994) Fungal metabolites. XIII. Isolation and structural elucidation of new peptaibols, trichodecenins-I and -II, from Trichoderma viride. Chem Pharm Bull 42:489–494PubMedGoogle Scholar
  93. Fujiwara A, Okuda T, Masuda S, Shiomi Y, Miyamoto C, Sekine Y, Tazoe M, Fujiwara M (1982) Isonitrile antibiotics, a new class of antibiotics with an isonitrile group. I. Fermentation, isolation and characterization of isonitrile antibiotics. Agric Biol Chem 46:1803–1809Google Scholar
  94. Gallos JK, Damianou KC, Dellios CC (2001) A new total synthesis of pentenomycin. Tetrahedron Lett 42:5769–5771Google Scholar
  95. Garo E, Starks CM, Jensen PR, Fenical W, Lobkovsky E, Clardy J (2003) Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. J Nat Prod 66:423–426PubMedGoogle Scholar
  96. Ghisalberti EL (2002) Anti-infective agents produced by the hyphomycetes general Trichoderma and Glioclaudium. Curr Med Cem 1:343–374Google Scholar
  97. Ghisalberti EL, Rowland CY (1993) Antifungal metabolites from Trichoderma harzianum. J Nat Prod 56:1799–1804PubMedGoogle Scholar
  98. Ghisalberti EL, Hockless DCR, Rowland C, White AH (1992) Harziandione, a new class of diterpene from Trichoderma harzianum. J Nat Prod 55:1690–1694Google Scholar
  99. Gloer JB (1997) Environmental and microbial relationships. In: Wicklow DT (ed) The mycota, vol IV. Söderström Springer-Verlag, Berlin, p 249Google Scholar
  100. Godtfredsen WO, Vangedal S (1964) Trichodermin, a new antibiotic related to trichothecin. Proc Chem Soc (June):188–189Google Scholar
  101. Godtfredsen WO, Vangedal S (1965) Trichodermin, a new sesquiterpene antibiotic. Acta Chem Scand 19:1088–1102PubMedGoogle Scholar
  102. Golder WS, Watson TR (1980) Lanosterol derivatives as precursors in the biosynthesis of viridin. Part 1. J Chem Soc Perkin Trans 1(2):422–425Google Scholar
  103. Goldstein JL, Helgeson JAS, Brown MS (1979) Inhibition of cholesterol synthesis with compactin renders growth of cultured cells dependent on the low density lipoprotein receptor. J Biol Chem 254:5403–5409PubMedGoogle Scholar
  104. Gottasová R, Betina V, Lesko J, Hrdlickova L, Chovanec P (1998) Secondary metabolites of a brown mutant of Trichoderma viride. Their isolation, purification and biological activities. Chem Pap 52:569Google Scholar
  105. Graefe U, Ihn W, Schlegel B, Hoefle G, Augustiniak H, Sandor P (1991) Structure of ergokonin C, a new carboxysterol antifungal antibiotic from a Tolypocladium inflatum mutant. Pharmazie 46:613–614Google Scholar
  106. Grove JF (1988) Non-macrocyclic trichothecenes. Nat Prod Rep 5:187–209PubMedGoogle Scholar
  107. Grove JF (1993) Macrocyclic trichothecenes. Nat Prod Rep 10:429–448Google Scholar
  108. Grove JF (1996) Non-macrocyclic trichothecenes. Part 2. Prog Chem Org Nat Prod 69:1–70Google Scholar
  109. Haefliger W, Hauser D (1973) Isolation and structure elucidation of 11-desacetoxywortmannin. Helv Chim Acta 56:2901–2904PubMedGoogle Scholar
  110. Haggag WM, Abo-Sedera SA (2005) Characteristics of three Trichoderma species in peanut haulms compost involved in biocontrol of cumin wilt disease. Int J Agric Biol 7:222–229Google Scholar
  111. Hanson JR (1995) The viridin family of steroidal antibiotics. Nat Prod Rep 12:381–384PubMedGoogle Scholar
  112. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56PubMedGoogle Scholar
  113. Harris GH, Jones ETT, Meinz MS, Nallin-Omstead M, Helms GL, Bills GF, Zink D, Wilson KE (1993) Isolation and structure elucidation of viridiofungins A, B and C. Tetrahedron Lett 34:5235–5238Google Scholar
  114. Harris GH, Dufresne C, Joshua H, Koch LA, Zink DL, Salmon PM, Goklen KE, Kurtz MM, Rew DJ, Bergstrom JD, Wilson KE (1995) Isolation, structure determination and squalene synthase activity of L-731,120 and L-731,128, alkyl citrate analogs of zaragozic acids A and B. Bioorg Med Chem Lett 5:2403–2408Google Scholar
  115. Hashimoto R, Takahashi S, Hamano K, Nakagawa A (1995) A new melanin biosynthesis inhibitor, melanoxadin from fungal metabolite by using the larval haemolymph of the silkworm, Bombyx mori. J Antibiot 48:1052–1054PubMedGoogle Scholar
  116. Hebbar KP, Lumsden RD (1998) Joint action of microbials for disease control. In: Menn JJ, Hall FR (eds) Biopesticides: use and delivery. Humana Press, Inc., Totawa, p 103Google Scholar
  117. Hetmanski M, Purcell N, Stoodley RJ, Palfreyman MN (1984) Studies related to cyclopentanoid natural products. Part 3. Synthesis of pentenomycin and its racemate. J Chem Soc Perkin Trans 1(9):2089–2096Google Scholar
  118. Hill RA, Cutler HG, Parker SR (1995) Trichoderma and metabolites as control agents for microbial plant diseases. PCT Int Appl 9520879, 10 Aug 1995Google Scholar
  119. Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Can J Microbiol 29:321–324CrossRefGoogle Scholar
  120. Howell CR, Stipanovic RD (1994) Effect of sterol biosynthesis inhibitors on phytotoxin (viridiol) production by Gliocladium virens in culture. Phytopathology 84:969–972Google Scholar
  121. Huang Q, Tezuka Y, Hatanaka Y, Kikuchi T, Nishi A, Tubaki K (1995a) Studies on metabolites of mycoparasitic fungi. III. New sesquiterpene alcohol from Trichoderma koningii. Chem Pharm Bull 43:1035–1038Google Scholar
  122. Huang Q, Tezuka Y, Kikuchi T, Nishi A, Tubaki K, Tanaka K (1995b) Studies on metabolites of mycoparasitic fungi. II. Metabolites of Trichoderma koningii. Chem Pharm Bull 43:223–239Google Scholar
  123. Huang Q, Shen HM, Shui G, Wenk M, Ong CN (2006) Emodin inhibits tumor cell adhesion through disruption of the membrane lipid raft-associated integrin signaling pathway. Cancer Res 66:5807–5815PubMedGoogle Scholar
  124. Hussain SA, Noorani R, Qureshi IH (1975) Microbial chemistry. Part I. Isolation and characterization of gliotoxin, ergosterol, palmitic acid and mannitol – metabolic products of Trichoderma hamatum Bainier. Pak J Sci Ind Res 18:221–223Google Scholar
  125. Hussein HS, Brasel JM (2001) Toxicity, metabolism and impact of mycotoxins on humans and animals. Toxicology 167:101–134PubMedGoogle Scholar
  126. Iida A, Uesato S, Shingu T, Nagaoka Y, Kuroda Y, Fujita T (1993) Fungal metabolites. Part 7. Solution structure of an antibiotic peptide, trichosporin B-V, from Trichoderma polysporum. J Chem Soc Perkin Trans 1(3):375–379Google Scholar
  127. Iida A, Sanekata M, Fujita T, Tanaka H, Enoki A, Fuse G, Kanai M, Rudewicz PJ, Tachikawa E (1994) Fungal metabolites. XVI. Structures of new peptaibols, trichokindins I-VII, from the fungus Trichoderma harzianum. Chem Pharm Bull 42:1070–1075PubMedGoogle Scholar
  128. Iida A, Sanekata M, Wada S, Fujita T, Tanaka H, Enoki A, Fuse G, Kanai M, Asami K (1995) Fungal metabolites. XVIII. New membrane-modifying peptides, trichorozins I-IV, from the fungus Trichoderma harzianum. Chem Pharm Bull 43:392–397PubMedGoogle Scholar
  129. Itoh Y, Kodama K, Furuya K, Takahashi S, Haneishi T, Takiguchi Y, Arai M (1980) A new sesquiterpene antibiotic, heptelidic acid producing organisms, fermentation, isolation and characterization. J Antibiot 33:468–473PubMedGoogle Scholar
  130. Jakobisiak M, Golab J (2003) Potential antitumor effects of statins (review). Int J Oncol 23:1055PubMedGoogle Scholar
  131. Jansen R, Höfle G (1983) Revised stereochemistry of piericidin A1. Tetrahedron Lett 24:5485–5486Google Scholar
  132. Jaworski A, Kirschbaum J, Bruckner H (1999) Structures of trichovirins II, peptaibol antibiotics from the mold Trichoderma viride NRRL 5243. J Pept Sci 5:341–351PubMedGoogle Scholar
  133. Jayasuriya H, Koonchanok NM, Geahlen RL, McLaughlin JL, Chang CJ (1992) Emodin, a protein tyrosine kinase inhibitor from Polygonum cuspidatum. J Nat Prod 55:696–698PubMedGoogle Scholar
  134. Jones PH (1990) Lovastatin and simvastatin prevention studies. Am J Cardiol 66:39B–43BPubMedGoogle Scholar
  135. Jones RW, Pettit RE (1987) Variation in sensitivity among anastomosis groups of Rhizoctonia solani to the antibiotic gliotoxin. Plant Dis 71:34–36Google Scholar
  136. Kamal A, Akhtar R, Qureshi AA (1971) Biochemistry of microorganisms. XX. 2,5-Dimethoxybenzoquinone, tartronic acid, itaconic acid, succinic acid, pyrocalciferol, epifriedlinol, lanosta-7,9(11), 24-triene-3-b-21-diol, trichodermene-A, methyl 2,4,6-octatrienecarboxylate, cordycepic acid, Trichoderma metabolic products. Pak J Sci Ind Res 14:71–78Google Scholar
  137. Kato M, Sakai K, Endo A (1992) Koningic acid (heptelidic acid) inhibition of glyceraldehyde-3-phosphate dehydrogenases from various sources. Biochim Biophys Acta 1120:113–116PubMedGoogle Scholar
  138. Kawada M, Yoshimoto Y, Kumagai H, Someno T, Momose I, Kawamura N, Isshiki K, Ikeda D (2004) PP2A inhibitors, harzianic acid and related compounds produced by fungal strain F-1531. J Antibiot 57:235–237PubMedGoogle Scholar
  139. Kawashima J, Ito F, Kato T, Niwano M, Koshino H, Uramoto M (1994) Antitumor activity of heptelidic acid chlorohydrin. J Antibiot 47:1562–1563PubMedGoogle Scholar
  140. Kirby GW, Robins DJ (1980) The biosynthesis of gliotoxin and related epipolythiodioxopiperazines. Biosynth Mycotoxins: Study Second Metab 301–326Google Scholar
  141. Kishimoto N, Sugihara S, Mochida K, Fujita T (2005) In vitro antifungal and antiviral activities of γ- and δ-lactone analogs utilized as food flavoring. Biocontrol Sci 10:31–36Google Scholar
  142. Kobayashi M, Uehara H, Matsunami K, Aoki S, Kitagawa I (1993) Trichoharzin, a new polyketide produced by the imperfect fungus Trichoderma harzianum separated from the marine sponge Mycale cecilia. Tetrahedron Lett 34:7925–7928Google Scholar
  143. Kono K, Tanaka M, Ono Y, Hosoya T, Ogita T, Kohama T (2001) S-15183a and b, new sphingosine kinase inhibitors, produced by a fungus. J Antibiot 54:415–420PubMedGoogle Scholar
  144. Kontani M, Sakagami Y, Marumo S (1994) First β-1,6-glucan biosynthesis inhibitor, bisvertinolone isolated from fungus, Acremonium strictum and its absolute stereochemistry. Tetrahedron Lett 35:2577–2580Google Scholar
  145. Krause C, Kirschbaum J, Jung G, Brueckner H (2006) Sequence diversity of the peptaibol antibiotic suzukacillin-A from the mold Trichoderma viride J Pept Sci 12:321–327PubMedGoogle Scholar
  146. Krupke OA, Castle AJ, Rinker DL (2003) The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Mycol Res 107:1467–1475PubMedGoogle Scholar
  147. Kubicek CP, Harman GE (eds) (1998) Trichoderma and Glioclaudium, vols 1 and 2. Taylor & Francis Ltd, LondonGoogle Scholar
  148. Kumagai H, Nishida H, Imamura N, Tomoda H, Omura S, Bordner J (1990) The structures of atpenins A4, A5 and B, new antifungal antibiotics produced by Penicillium sp. J Antibiot 43:1553–1558PubMedGoogle Scholar
  149. Kumar A, Dhawan S, Aggarwal BB (1998) Emodin (3-methyl-1,6,8-trihydroxy-anthraquinone) inhibits TNF-induced NF-kB activation, IkB degradation, and expression of cell surface adhesion proteins in human vascular endothelial cells. Oncogene 17:913–918PubMedGoogle Scholar
  150. Kumeda Y, Asao T, Iida A, Wada S, Futami S, Fujita T (1994) Effects of ergokonin A produced by Trichoderma viride on the growth and morphological development of fungi. Bokin Bobai 22:663–670Google Scholar
  151. Leclerc G, Goulard C, Prigent Y, Bodo B, Wroblewski H, Rebuffat S (2001) Sequences and antimycoplasmic properties of longibrachins LGB II and LGB III, two novel 20-residue peptaibols from Trichoderma longibrachiatum. J Nat Prod 64:164–170PubMedGoogle Scholar
  152. Lee SH, Hensens OD, Helms GL, Liesch JM, Zink DL, Giacobbe RA, Bills GF, Stevens-Miles S, Garcia ML, Schmalhofer WA, McManus OB, Kaczorowski GJ (1995a) L-735,334, a novel sesquiterpenoid potassium channel-agonist from Trichoderma virens. J Nat Prod 58:1822–1828Google Scholar
  153. Lee CH, Koshino H, Chung MC, Lee HJ, Kho YH (1995b) MR304A, a new melanin synthesis inhibitor produced by Trichoderma harzianum. J Antibiot 48:1168–1170Google Scholar
  154. Lee CH, Chung MC, Lee HJ, Bae KS, Kho YH (1997a) MR566A and MR566B, new melanin synthesis inhibitors produced by Trichoderma harzianum. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 50:469–473Google Scholar
  155. Lee CH, Koshino H, Chung MC, Lee HJ, Hong JK, Yoo JS, Kho YH (1997b) MR566A and MR566B, new melanin synthesis inhibitors produced by Trichoderma harzianum. II. Physico-chemical properties and structural elucidation. J Antibiot 50:474–478Google Scholar
  156. Lee HB, Kim Y, Jin HZ, Lee JJ, Kim CJ, Park JY, Jung HS (2005) A new Hypocrea strain producing harzianum A cytotoxic to tumour cell lines. Lett Appl Microbiol 40:497–503PubMedGoogle Scholar
  157. Liu G, Wang Z (2001) Total synthesis of koninginin D, B and E. Synthesis 1:119–127Google Scholar
  158. Liu R, Gu QQ, Zhu WM, Cui CB, Fan GT (2005a) Trichodermamide A and aspergillazine A, two cytotoxic modified dipeptides from a marine-derived fungus Spicaria elegans. Arch Pharmacol Res 28:1042–1046Google Scholar
  159. Liu W, Gu Q, Zhu W, Cui C, Fan G (2005b) Two new benzoquinone derivatives and two new bisorbicillinoids were isolated from a marine-derived fungus Penicillium terrestre. J Antibiot 58:441–446Google Scholar
  160. Macias FA, Varela RM, Simonet AM, Cutler HG, Cutler SJ, Eden MA, Hill RA (2000) Bioactive carotanes from Trichoderma virens. J Nat Prod 63:1197–1200PubMedGoogle Scholar
  161. Mandala SM, Thornton RA, Frommer BR, Dreikorn S, Kurtz MB (1997) Viridiofungins, novel inhibitors of sphingolipid synthesis. J Antibiot 50:339–343PubMedGoogle Scholar
  162. Manyu SKK (1980) The physiologically active substance SC2051. Jpn Kokai Tokkyo Koho 80:54,897 (Chem. Abstr. 1980, 93:112329)Google Scholar
  163. Marfori EC, Kajiyama S, Fukusaki E, Kobayashi A (2002) Trichosetin, a novel tetramic acid antibiotic produced in dual culture of Trichoderma harzianum and Catharanthus roseus callus. Z Naturforsch C: J Biosci 57:465–470Google Scholar
  164. Marfori EC, Kajiyama S, Fukusaki E, Kobayashi A (2003). Phytotoxicity of the tetramic acid metabolite trichosetin. Phytochemistry 62:715–721PubMedGoogle Scholar
  165. Mazzucco CE, Warr G (1996) Trichodimerol (BMS-182123) inhibits lipopolysaccharide-induced eicosanoid secretion in THP-1 human monocytic cells. J Leukocyte Biol 60:271–277PubMedGoogle Scholar
  166. McKean C, Tang L, Billam M, Tang M, Theodorakis CW, Kendall RJ, Wang JS (2006) Comparative acute and combinative toxicity of aflatoxin B1 and T-2 toxin in animals and immortalized human cell lines. J Appl Toxicol 26:139–147PubMedGoogle Scholar
  167. Meinz MS, Pelaez F, Omstead MN, Milligan JA, Diez MT, Onishi JC, Bergstrom JA, Jenkins RF, Harris GH, Jones ETT, Huang L, Kong YL, Lingham RB, Zink D (1993) Cholesterol-lowering agents, their manufacture with Trichoderma, and their use as fungicides or as medicines. Eur. Pat. Appl. 526936, 10 Feb 1993Google Scholar
  168. Mereyala HB, Joe M, Gadikota RR (2000) Synthesis of harzialactone A and its isomers from D-glucose and assignment of absolute stereochemistry. Tetrahedron: Asymmetry 11:4071–4081Google Scholar
  169. Meyer CE (1966) U-21,963, a new antibiotic. II. Isolation and characterization. Appl Microbiol 14:511–512PubMedGoogle Scholar
  170. Meyer CE, Reusser F (1967) A polypeptide antibacterial agent from Trichoderma viride. Experientia 23:85–86PubMedGoogle Scholar
  171. Michael AP, Grace EJ, Kotiw M, Barrow RA (2003) Isochromophilone IX, a novel GABA-containing metabolite isolated from a cultured fungus, Penicillium sp. Aust J Chem 56:13–15Google Scholar
  172. Mihara T, Iida A, Akimoto N, Fujita T, Takaishi Y, Inoue K, Kushimoto S (1994) Structures of antibiotic peptides, trichopolyns, from the fungus Trichoderma polysporum. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 36:713–720Google Scholar
  173. Moffatt JS, Bu’Lock JD, Yuen TH (1969) Viridiol, a steroid-like product from Trichoderma viride. J Chem Soc Chem Commun 14:839Google Scholar
  174. Mohamed-Benkada M, Montagu M, Biard J, Mondeguer F, Verite P, Dalgalarrondo M, Bissett J, Pouchus YF (2006) New short peptaibols from a marine Trichoderma strain. Rapid Commun Mass Spectrom 20:1176–1180PubMedGoogle Scholar
  175. Mori K, Bando M, Abe K (2002) Determination of the stereochemistry of (-)-koninginin A by an X-ray analysis of its synthetic sample. Biosci Biotechnol Biochem 66:1779–1781PubMedGoogle Scholar
  176. Morokuma K, Takahashi K, Ishihara J, Hatakeyama S (2005) Total synthesis of viridiofungin A. Chem Commun 17:2265–2267Google Scholar
  177. Mukhopadhyay T, Roy K, Sawant SN, Deshmukh SK, Ganguli BN, Fehlhaber HW (1996) On an unstable antifungal metabolite from Trichoderma koningii. Isolation and structure elucidation of a new cyclopentenone derivative (3-dimethylamino-5-hydroxy-5-vinyl-2-cyclopenten-1-one). J Antibiot 49:210–211PubMedGoogle Scholar
  178. Nakano H, Hara M, Mejiro T, Ando K, Saito Y, Morimoto M (1990) DC1149B, DC1149R, and their manufacture with Trichoderma. Jpn. Kokai Tokkyo Koho, JP Patent 02218686, 31 Aug 1990Google Scholar
  179. New AP, Eckers C, Haskins NJ, Neville WA, Elson S, Hueso-Rodriguez JA, Rivera-Sagredo A (1996) Structures of polysporins A-D, four new peptaibols isolated from Trichoderma polysporum. Tetrahedron Lett 37:3039–3042Google Scholar
  180. Nicolaou KC, Simonsen KB, Vassilikogiannakis G, Baran PS, Vidali VP, Pitsinos EN, Couladouros EA (1999) Biomimetic explorations towards the bisorbicillinoids: total synthesis of bisorbicillinol, bisorbibutenolide, and trichodimerol. Angew Chem Int Ed 38:3555–3559Google Scholar
  181. Nicolaou KC, Vassilikogiannakis G, Simonsen K, Baran PS, Zhong YL, Vidali VP, Pitsinos EN, Couladouros EA (2000) Biomimetic total synthesis of bisorbicillinol, bisorbibutenolide, trichodimerol, and designed analogues of the bisorbicillinoids. J Am Chem Soc 122:3071–3079Google Scholar
  182. Nielsen KF, Graefenhan T, Zafari D, Thrane U (2005) Trichothecene production by Trichoderma brevicompactum. J Agric Food Chem 53:8190–8196PubMedGoogle Scholar
  183. Nobuhara M, Tazima H, Shudo K, Itai A, Okamoto T, Iitaka Y (1976) A fungal metabolite, novel isocyano epoxide. Chem Pharm Bull 24:832–834Google Scholar
  184. Nowak A, Steffan B (1997) Physarorubinic acid, a polyenoyltetramic acid type plasmodial pigment from the slime mold Physarum polycephalum. Liebigs Ann Recl 9:1817–1821Google Scholar
  185. Nowak A, Steffan B (1998) Polycephalin B and C: unusual tetramic acids from plasmodia of the slime mold Physarum polycephalum (myxomycetes). Angew Chem Int Ed 37:3139–3141Google Scholar
  186. Nozoe S, Goi M, Morisaki N (1970) Structure of cyclonerodiol. Tetrahedron Lett 15:1293–1296PubMedGoogle Scholar
  187. Oh SU, Lee SJ, Kim JH, Yoo ID (2000) Structural elucidation of new antibiotic peptides, atroviridins A, B and C from Trichoderma atroviride. Tetrahedron Lett 41:61–64Google Scholar
  188. Ollis WD, Rey M, Godtfredsen WO, Rasrup-Andersen N, Vangedal S, King TJ (1980) The constitution of the antibiotic trichoviridin. Tetrahedron 36:515–520Google Scholar
  189. Omura S, Tomoda H, Kimura K, Zhen DZ, Kumagai H, Igarashi K, Imamura N, Takahashi Y, Tanaka Y, Iwai Y (1988) Atpenins, new antifungal antibiotics produced by Penicillium sp. Production, isolation, physico-chemical and biological properties. J Antibiot 41:1769–1773PubMedGoogle Scholar
  190. Ondeyka JG, Ball RG, Garcia ML, Dombrowski AW, Sabnis G, Kaczorowski GJ, Zink DL, Bills GF, Goetz M, Schmalhofer WA, Singh SB (1995) A carotane sesquiterpene as a potent modulator of the Maxi-K channel from Arthrinium phaeospermum. Bioorg Med Chem Lett 5:733–734Google Scholar
  191. Onishi JC, Milligan JA, Basilio A, Bergstrom J, Curotto J, Huang L, Meinz M, Nallin-Omstead M, Pelaez F, Rew D, Salvatore M, Thompson J, Vicente F, Kurtz MB (1997) Antimicrobial activity of viridiofungins. J Antibiot 50:334–338PubMedGoogle Scholar
  192. Ordentlich A, Wiesman Z, Gottlieb HE, Cojocaru M, Chet I (1992) Inhibitory furanone produced by the biocontrol agent Trichoderma harzianum. Phytochemistry 31:485–486Google Scholar
  193. Oshino K, Kumagai H, Tomoda H, Omura S (1990) Mechanism of action of atpenin B on Raji cells. J Antibiot 43:1064–1068PubMedGoogle Scholar
  194. Otsuka T, Takase S, Terano H, Okuhara M (1992) New angiogenesis inhibitors, WF-16775 A1 and A2. J Antibiot 45:1970–1973PubMedGoogle Scholar
  195. Papavizas GC (1985) Trichoderma and Glioclaudium: biology, ecology and potential for biocontrol. Ann Rev Phytopathol 23:23–54Google Scholar
  196. Parker SR, Cutler HG, Schreiner PR (1995a) Koninginin C: a biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem 59:1126–1127CrossRefGoogle Scholar
  197. Parker SR, Cutler HG, Schreiner PR (1995b) Koninginin E: isolation of a biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem 59:1747–1749Google Scholar
  198. Parker RS, Cutler HG, Jacyno JM, Hill RA (1997) Biological activity of 6-pentyl-2H-pyran-2-one and its analogs. J Agric Food Chem 45:2774–2776Google Scholar
  199. Pitel DW, Arsenault GP, Vining LC (1971) Cyclonerodiol, a sesquiterpene metabolite of Gibberella fujikuroi. J Antibiot 24:483–484PubMedGoogle Scholar
  200. Pohmakotr M, Popuang S (1991) Intramolecular acylation of a-sulfinyl carbanion: a facile synthesis of (±)-pentenomycin I and (±)-epipentenomycin I. Tetrahedron Lett 32:275–278Google Scholar
  201. Poole PR, Ward BG, Whitaker G (1998) The effects of topical treatments with 6-pentyl-2-pyrone and structural analogs on stem end post-harvest rots in kiwi fruit due to Botrytis cinerea. J Agric Food Chem 77:81–86Google Scholar
  202. Pratt BH, Sedgley JH, Heather WA, Sheperd CJ (1972) Oospore production in Phytophtora cinnamomi in the presence of Trichoderma koningii. Aust J Biol Sci 25:861–863Google Scholar
  203. Pyke TR, Dietz A (1966) U-21,963, a new antibiotic. I. Discovery and biological activity. Appl Microbiol 14:506–510PubMedGoogle Scholar
  204. Qian-Cutrone J, Huang S, Chang LP, Pirnik DM, Klohr SE, Dalterio RA, Hugill R, Lowe S, Alam M, Kadow KF (1996) Harziphilone and fleephilone, two new HIV REV/RRE binding inhibitors produced by Trichoderma harzianum. J Antibiot 49:990–997PubMedGoogle Scholar
  205. Rebuffat S, El Hajji M, Hennig P, Davoust D, Bodo B (1989) Isolation, sequence, and conformation of seven trichorzianines B from Trichoderma harzianum. Int J Pept Protein Res 34:200–210PubMedCrossRefGoogle Scholar
  206. Rebuffat S, Prigent Y, Auvin-Guette C, Bodo B (1991) Tricholongins B I and B II, 19-residue peptaibols from Trichoderma longibrachiatum. Solution structure from two-dimensional NMR spectroscopy. Eur J Biochem 201:661–74PubMedGoogle Scholar
  207. Rebuffat S, Conraux L, Massias M, Auvin-Guette C, Bodo B (1993) Sequence and solution conformation of the 20-residue peptaibols, saturnisporins SA II and SA IV. Int J Pept Protein Res 41:74–84PubMedCrossRefGoogle Scholar
  208. Rebuffat S, Goulard C, Bodo B (1995) Antibiotic peptides from Trichoderma harzianum: harzianins HC, proline-rich 14-residue peptaibols. J Chem Soc Perkin Trans 1(14):1849–1855Google Scholar
  209. Reeves RJ, Jackson RM (1972) Induction of Phytophthora cinnamomi oospores in soil by Trichoderma viride. Trans Br Mycol Soc 59:156–159Google Scholar
  210. Reichenbach H, Forche E, Gerth K, Irschik H, Kunze B, Sasse F, Hoefle G, Augustiniak H, Bedorf N (1990) Fungicidal steroids from Trichoderma. Ger. Offen., DE Patent 3823068, 11 Jan 1990Google Scholar
  211. Ritieni A, Fogliano V, Nanno D, Randazzo G, Altomare C, Perrone G, Bottalico A, Maddau L, Marras F (1995) Paracelsin E, a new peptaibol from Trichoderma saturnisporum. J Nat Prod 58:1745–1748PubMedGoogle Scholar
  212. Rosen T, Taschner MJ, Heathcock CH (1983) Synthetic and biological studies of compactin and related compounds. 2. Synthesis of the lactone moiety of compactin. J Org Chem 49:3994–4003Google Scholar
  213. Roush WR, Russo-Rodriguez S (1987) Trichothecene degradation studies. 3. Synthesis of 12,13-deoxy-12,13-methanoanguidine and 12-epianguidine, two optically active analogs of the epoxytrichothecene mycotoxin anguidine. J Org Chem 52:603–606Google Scholar
  214. Saito M, Yamanishi T, Tsuruta O (1979) Studies on the odor substances of fungi. Part I. Identification of the fungal odors produced on the synthetic medium. Shokuhin Sogo Kenkyusho Kenkyu Hokoku 34:67–69Google Scholar
  215. Sakai K, Hasumi K, Endo A (1988) Inactivation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase by koningic acid. Biochim Biophys Acta 952:297–303PubMedGoogle Scholar
  216. Sakuno E, Yabe K, Hamasaki T, Nakajima HA (2000) New inhibitor of 5’-hydroxyaverantin dehydrogenase, an enzyme involved in aflatoxin biosynthesis, from Trichoderma hamatum. J Nat Prod 63:1677–1678PubMedGoogle Scholar
  217. Sasaki M, Kaneko Y, Oshita K, Takamatsu H, Asao Y, Yokotsuka T (1970) Compounds produced by molds. VII. Isolation of isocoumarin compounds. Agric Biol Chem 34:1296–1300Google Scholar
  218. Sauviat MP, Laurent D, Koehler F, Pellegrin F (1992) Blockage of the sodium conductance by the mycotoxin cyclonerodiol in voltage-clamped frog skeletal muscle fibers. Recent Adv Toxinol Res 3:266–271Google Scholar
  219. Sawa R, Mori Y, Iinuma H, Naganawa H, Hamada M, Yoshida S, Furutani H, Kajimura Y, Fuwa T, Takeuchi T (1994) Harzianic acid, a new antimicrobial antibiotic from a fungus. J Antibiot 47:731–732PubMedGoogle Scholar
  220. Scarselletti R, Faull JL (1994) In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol Res 98:1207–1209Google Scholar
  221. Seepersaud M, Al-Abed Y (2000) The polyhydroxy cyclopentene, a total synthesis of (-)-pentenomycin. Tetrahedron Lett 41:4291–4293Google Scholar
  222. Shiozawa H, Takahashi M, Takatsu T, Kinoshita T, Tanzawa K, Hosoya T, Furuya K, Takahashi S, Furihata K, Seto H (1995) Trachyspic acid, a new metabolite produced by Talaromyces trachyspermus, that inhibits tumor cell heparanase: taxonomy of the producing strain, fermentation, isolation, structural elucidation, and biological activity. J Antibiot 48:357–362PubMedGoogle Scholar
  223. Shirota O, Pathak V, Hossain CF, Sekita S, Takatori K, Satake M (1997) Structural elucidation of trichotetronines: polyketides possessing a bicyclo[2.2.2]octane skeleton with a tetronic acid moiety isolated from Trichoderma sp. J Chem Soc Perkin Trans 1(20):2961–2964Google Scholar
  224. Shomura T, Yoshida J, Kondo Y, Watanabe H, Omoto S, Inouye S, Niida T (1976) A new antibiotic SF-1768 substance. Meiji Seika Kenkyu Nenpo 16:1–9Google Scholar
  225. Simon A, Dunlop RW, Ghisalberti EL, Sivasithamparam K (1988) Trichoderma koningii produces a pyrone compound with antibiotic properties. Soil Biol Biochem 20:263–264Google Scholar
  226. Singh SB, Zink DL, Goetz MA, Dombrowski AW, Polishook JD, Hazuda DJ (1998) Equisetin and a novel opposite stereochemical homolog phomasetin, two fungal metabolites as inhibitors of HIV-1 integrase. Tetrahedron Lett 39:2243–2246Google Scholar
  227. Singh SB, Zink DL, Doss GA, Polishook JD, Ruby C, Register E, Kelly TM, Bonfiglio C, Williamson JM, Kelly R (2004) Citrafungins A and B, two new fungal metabolite inhibitors of GGTase I with antifungal activity. Org Lett 6:337–340PubMedGoogle Scholar
  228. Singh S, Dureja P, Tanwar RS, Singh A (2005) Production and antifungal activity of secondary metabolites of Trichoderma virens. Pestic Res J 17:26–29Google Scholar
  229. Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Glioclaudium. In: Kubicek CP, Harman GE (eds) Trichoderma and Glioclaudium, vol 1. Taylor & Francis Ltd, LondonGoogle Scholar
  230. Slater GP, Haskins RH, Hogge LR, Nesbitt LR (1967) Metabolic products from a Trichoderma viride. Can J Chem 45:92–96Google Scholar
  231. Smith AB III, Pilla NN (1980) A stereospecific total synthesis of (±)-epipentenomycin I, (±)-epipentenomycin II, and (±)-epipentenomycin III. Tetrahedron Lett 21:4691–4694Google Scholar
  232. Smith AB III, Branca SJ, Pilla NN, Guaciaro MA (1982) Stereocontrolled total synthesis of (±)-pentenomycins I-III, their epimers, and dehydropentenomycin I. J Org Chem 47:1855–1869Google Scholar
  233. Sono T, Matsumura Y, Yamane S, Suzuki M (1980) First synthesis of an epimer of (±)-pentenomycin I. Chem Lett 12:1619–1620Google Scholar
  234. Sparapano L, Evidente A (1995) Studies on structure-activity relationship of seiridins, phytotoxins produced by three species of Seiridium. Nat Toxins 3:166–173PubMedGoogle Scholar
  235. Sparapano L, Evidente A, Ballio A, Graniti A, Randazzo G (1986) New phytotoxic butenolides produced by Seiridium cardinale, the pathogen of cypress canker disease. Experientia 42:627–628Google Scholar
  236. Sperry S, Samuels GJ, Crews P (1998) Vertinoid polyketides from the saltwater culture of the fungus Trichoderma longibrachiatum separated from a Haliclona marine sponge. J Org Chem 63:10011–10014Google Scholar
  237. Stipanovic RD, Howell CR (1982) The structure of gliovirin, a new antibiotic from Gliocladium virens. J Antibiot 35:1326–1330PubMedGoogle Scholar
  238. Stokker GE, Hoffman WF, Alberts AW, Cragoe EJ Jr, Deana AA, Gilfillan JL, Huff JW, Novello FC, Prugh JD, Smith RL (1985) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. 1. Structural modification of 5-substituted 3,5-dihydroxypentanoic acids and their lactone derivatives. J Med Chem 28:347–358PubMedGoogle Scholar
  239. Strunz GM, Ren WY, Stillwell MA, Valenta Z (1977) Structure and synthesis of a new cyclopentenone derivative from Trichoderma album. Can J Chem 55:2610–2612Google Scholar
  240. Sugahara T, Ogasawara K (1999) Baylis-Hillmann protocol in an enantiocontrolled synthesis of pentenomycin I. Synlett 4:419–420Google Scholar
  241. Takahashi N, Suzuki A, Tamura S (1965) Structure of piercidin A. J Am Chem Soc 87:2066–2068PubMedGoogle Scholar
  242. Takahashi S, Hashimoto R, Hamano K, Suzuki T, Nakagawa A (1996) Melanoxazal, new melanin biosynthesis inhibitor discovered by using the larval haemolymph of the silkworm, Bombyx mori. Production, isolation, structural elucidation, and biological properties. J Antibiot 49:513–518PubMedGoogle Scholar
  243. Takashima J, Wataya Y (1999) Trichothecene derivatives as antimalarial agents. Jpn. Kokai Tokkyo Koho, JP Patent 11228408, 24 Aug 1999Google Scholar
  244. Tamura A, Kotani H, Naruto S (1975) Trichoviridin and dermadin from Trichoderma sp. TK-1. J Antibiot 28:161–162PubMedGoogle Scholar
  245. Tanaka Y, Shiomi K, Kamei K, Sugoh-Hagino M, Enomoto Y, Fang F, Yamaguchi Y, Masuma R, Zhang CG, Zhang XW, Omura S (1998) Antimalarial activity of radicicol, heptelidic acid and other fungal metabolites. J Antibiot 51:153–160PubMedGoogle Scholar
  246. Tarus PK, Lang’at-Thoruwa CC, Wanyonyi AW, Chhabra SC (2003) Bioactive metabolites from Trichoderma harzianum and Trichoderma longibrachiatum. B Chem Soc Ethiopia 17:185–190Google Scholar
  247. Tezuka Y, Tasaki M, Huang Q, Hatanaka Y, Kikuchi T (1997) Studies on metabolites of mycoparasitic fungi. Part 6. 15-Hydroxyacorenone. New acorane-type sesquiterpene from the culture broth of the mycoparasitic fungus Trichoderma harzianum. Liebigs Ann Recl 12:2579–2580Google Scholar
  248. Thines E, Anke H, Sterner O (1998) Trichoflectin, a bioactive azaphilone from the ascomycete Trichopezizella nidulus. J Nat Prod 61:306–308PubMedGoogle Scholar
  249. Turner WB, Aldridge DC (eds) (1983) Fungal metabolites II. Academic Press, LondonGoogle Scholar
  250. Umino K, Furumai T, Matsuzawa N, Awataguchi Y, Ito Y, Okuda T (1973) Pentenomycins. I. Production, isolation, and properties of pentenomycins I and II, new antibiotics from Streptomyces eurythermus MCRI 0738. J Antibiot 26:506–512PubMedGoogle Scholar
  251. Umino K, Yamaguchi T, Ito Y (1974) Pentenomycins. IV. Preparation and antimicrobial activities of pentenomycin derivatives. Chem Pharm Bull 22:2113–2117PubMedGoogle Scholar
  252. Usami Y, Ikura T, Amagata T, Numata A (2000) First total syntheses and configurational assignments of cytotoxic trichodenones A-C. Tetrahedron: Asymmetry 11:3711–3725Google Scholar
  253. Vicente MF, Cabello A, Platas G, Basilio A, Diez MT, Dreikorn S, Giacobbe RA, Onishi JC, Meinz M, Kurtz MB, Rosenbach M, Thompson J, Abruzzo G, Flattery A, Kong L, Tsipouras A, Wilson KE, Pelaez F (2001) Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum. J Appl Microbiol 91:806–813PubMedGoogle Scholar
  254. Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol (Available on-line from Blackwell-synergy webpage)Google Scholar
  255. Warr GA, Veitch JA, Walsh AW, Hesler GA, Pirnik DM, Leet JE, Lin PF, Medina IA, McBrien KD, Forenza S, Clark JM, Lam KS (1996) BMS-182123, a fungal metabolite that inhibits the production of TNF-alpha by macrophages and monocytes. J Antibiot 49:234–240PubMedGoogle Scholar
  256. Watanabe N, Yamagishi M, Mizutani T, Kondoh H, Omura S, Hanada K, Kushida K (1990) CAF-603: a new antifungal carotane sesquiterpene. Isolation and structure elucidation. J Nat Prod 53:1176–1181PubMedGoogle Scholar
  257. Watts R, Dahiya J, Chaudhary K, Tauro P (1988) Isolation and characterization of a new antifungal metabolite of Trichoderma reesei. Plant Soil 107:81–84Google Scholar
  258. Westerberg UB, Bolcsfoldi G, Eliasson E (1976) Control of transfer RNA synthesis in the presence of inhibitors of protein synthesis. Biochim Biophys Acta 447:203–213PubMedGoogle Scholar
  259. Wheeler MH, Stipanovic RD, Puckhaber LS (1999) Phytotoxicity of equisetin and epi-equisetin isolated from Fusarium equiseti and F. pallidoroseum. Mycol Res 103:967–973Google Scholar
  260. Wicklow DT (1998) In: Pirosynzki KA, Hawksworth D (eds) Coevolution of fungi with plants and animals. Academic Press, New York, p 174Google Scholar
  261. Wilson KE, Burk RM, Biftu T, Ball RG, Hoogsteen K (1992) Zaragozic acid A, a potent inhibitor of squalene synthase: initial chemistry and absolute stereochemistry. J Org Chem 57:7151–7158Google Scholar
  262. Wipf P, Halter RJ (2005) Chemistry and biology of wortmannin. Org Biomol Chem 3:2053–2061PubMedGoogle Scholar
  263. Wipf P, Kerekes AD (2003) Structure reassignment of the fungal metabolite TAEMC161 as the phytotoxin viridiol. J Nat Prod 66:716–871PubMedGoogle Scholar
  264. Worasatit N, Sivasithamparam K, Ghisalberti EL, Rowland C (1994) Variation in pyrone production, pectic enzymes and control of rhizoctonia root rot of wheat among single-spore isolates of Trichoderma koningii. Mycol Res 98:1357–1363CrossRefGoogle Scholar
  265. Wright JM (1954) The production of antibiotics in soil. I. Production of gliotoxin by Trichoderma viride. Ann Appl Biol 41:280–289CrossRefGoogle Scholar
  266. Wu YW, Ouyang J, Xiao X, Gao WY, Liu Y (2006) Antimicrobial properties and toxicity of anthraquinones by microcalorimetric bioassay. Chin J Chem 24:45–50Google Scholar
  267. Xu XX, Zhu YH (1995) Total synthesis of koninginin A and its diastereoisomer. Tetrahedron Lett 36:9173–9176Google Scholar
  268. Yamano T, Hemmi S, Yamamoto I, Tsubaki K (1970) Trichoviridin, a new antibiotic. Jpn. Tokkyo Koho, JP Patent 45015435, 29 May 1970Google Scholar
  269. Yamashita H (2000) Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect. Frag J 28:62–65Google Scholar
  270. Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353PubMedGoogle Scholar
  271. Zhu J, Germain AR, Porco JA Jr (2004) Synthesis of azaphilones and related molecules by employing cycloisomerization of o-alkynylbenzaldehydes. Angew Chem Int Ed 43:1239–1243Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • José Luis Reino
    • 1
  • Raul F. Guerrero
    • 1
  • Rosario Hernández-Galán
    • 1
  • Isidro G. Collado
    • 1
    Email author
  1. 1.Departamento de Química Orgánica, Facultad de CienciasUniversidad de CádizPuerto RealSpain

Personalised recommendations