Advertisement

Phytochemistry Reviews

, Volume 5, Issue 1, pp 49–58 | Cite as

Metabolic Engineering of Terpenoid Biosynthesis in Plants

  • Asaph Aharoni
  • Maarten A. Jongsma
  • Tok-Yong Kim
  • Man-Bok Ri
  • Ashok P. Giri
  • Francel W. A. Verstappen
  • Wilfried Schwab
  • Harro J. Bouwmeester
Open Access
Article

Abstract

Metabolic engineering of terpenoids in plants is a fascinating research topic from two main perspectives. On the one hand, the various biological activities of these compounds make their engineering a new tool for improving a considerable number of traits in crops. These include for example enhanced disease resistance, weed control by producing allelopathic compounds, better pest management, production of medicinal compounds, increased value of ornamentals and fruit and improved pollination. On the other hand, the same plants altered in the profile of terpenoids and their precursor pools make a most important contribution to fundamental studies on terpenoid biosynthesis and its regulation. In this review we describe our recent results with terpenoid engineering, focusing on two terpenoid classes the monoterpenoids and sesquiterpenoids. The emerging picture is that engineering of these compounds and their derivatives in plant cells is feasible, although with some requirements and limitations. For example, in terpenoid engineering experiments crucial factors are the subcellular localisation of both the precursor pool and the introduced enzymes, the activity of endogenous plant enzymes which modify the introduced terpenoid skeleton, the costs of engineering in terms of effects on other pathways sharing the same precursor pool and the phytotoxicity of the introduced terpenoids. Finally, we will show that transgenic plants altered in their terpenoid profile exert novel biological activities on their environment, for example influencing insect behaviour.

Keywords

linalool MEP pathway mevalonate pathway monoterpene sesquiterpene 

Abbreviations

DMADP

dimethylallyl diphosphate

FDP

farnesyl diphosphate

GDP

geranyl diphosphate

GGDP

geranylgeranyl diphosphate

IDP

isopentenyl diphosphate

MEP

methylerythritol 4-phosphate

TPSs

terpene synthases

References

  1. Aharoni A, Giri AP, Deuerlein S, Griepink F, de-Kogel W-J, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W and Bouwmeester HJ (2003). Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15: 2866–2884 PubMedCrossRefGoogle Scholar
  2. Aharoni A, Giri AP, Verstappen FW, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W and Bouwmeester HJ (2004). Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16: 3110–3131 PubMedCrossRefGoogle Scholar
  3. Besumbes O, Sauret-Gueto S, Phillips MA, Imperial S, Rodriguez-Concepcion M and Boronat A (2004). Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of taxol. Biotechnol. Bioeng. 88(2): 168–175 PubMedCrossRefGoogle Scholar
  4. Bick JA and Lange BM (2003). Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arc. Biochem. Biophys. 415: 146–154 CrossRefGoogle Scholar
  5. Botella-Pavia P, Besumbes O, Phillips MA, Carretero-Paulet L, Boronat A and Rodriguez-Concepcion M (2004). Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant J. 40: 188–199 PubMedCrossRefGoogle Scholar
  6. Bouwmeester HJ, Verstappen FWA, Posthumus MA and Dicke M (1999). Spider mite-induced (3S)-(E)-nerolidol synthase activity in cucumber and lima bean The first dedicated step in acyclic C11-homoterpene biosynthesis. Plant Physiol. 121: 173–180 PubMedCrossRefGoogle Scholar
  7. Carretero-Paulet L, Ahumada I, Cunillera N, Rodriguez-Concepcion M, Ferrer A, Boronat A and Campos N (2002). Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-c-methyl-d-erythritol 4-phosphate pathway. Plant Physiol. 129: 1581–1591 PubMedCrossRefGoogle Scholar
  8. Chappell J, Wolf F, Proulx J, Cuellar R and Saunders C (1995). Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants. Plant Physiol. 109: 1337–1343 PubMedGoogle Scholar
  9. Chen F, Tholl D, D’Auria JC, Farooq A, Picherskey E and Gershenzon J (2003). Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15: 481–494 PubMedCrossRefGoogle Scholar
  10. Crock J, Wildung M and Croteau R (1997). Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha × piperita L.) that produces the aphid alarm pheromone (E)- β - farnesene. Proc. Natl. Acad. Sci. USA 94: 12833–12838 PubMedCrossRefGoogle Scholar
  11. D’Auria JC and Gershenzon J (2005). The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr. Opin. Plant Biol. 8: 308–316 PubMedCrossRefGoogle Scholar
  12. Degenhardt J, Kollner T, Schnee C, Held M, Rasman S, Turlings TCJ & Gershenzon J. (2005). The role of maize sesquiterpene hydrocarbons as signals in multitrophic interaction. Book of Abstracts, Terpnet 2005 meeting, Wageningen, The Netherlands, p. 49Google Scholar
  13. Diemer F, Caissard J-C, Moja S, Chalchat J-C and Jullien F (2001). Altered monoterpene composition in transgenic mint following the introduction of 4S-limonene synthase. Plant Physiol. Biochem. 39: 603–614 CrossRefGoogle Scholar
  14. Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W and Gershenson J (2005). The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc. Natl. Acad. Sci. USA 102: 933–938 PubMedCrossRefGoogle Scholar
  15. Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M and Bach TJ (2003). Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J. Biol. Chem. 278: 26666–26676 PubMedCrossRefGoogle Scholar
  16. Hohn TM and Ohlrogge JB (1991). Expression of a fungal sesquiterpene cyclase gene in transgenic tobacco. Plant Physiol. 97: 460–462 PubMedCrossRefGoogle Scholar
  17. Kappers IF, Aharoni A, Luckerhoff LLP, Dicke M, Bouwmeester HJ and Herpen TWJM (2005). Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309: 2070–2072 PubMedCrossRefGoogle Scholar
  18. Laule O, Furholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W and Lange M (2003). Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 100: 6866–6871 PubMedCrossRefGoogle Scholar
  19. Lavy M, Zuker A, Lewinsohn E, Larkov O, Ravid U, Vainstein A and Weiss D (2002). Linalool and linallol oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol. Breeding 9: 103–111 CrossRefGoogle Scholar
  20. Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Hee Nam K, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W, Gepstein S and Picherskey E (2001). Enhanced levels of the aroma and flavor compound s-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol. 127: 1256–1265 PubMedCrossRefGoogle Scholar
  21. Lucker J, Bouwmeester HJ, Schwab W, Blaas J, Verhoeven HA and Plas LHW (2001). Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-d-glycopyranoside. Plant J 27: 315–324 PubMedCrossRefGoogle Scholar
  22. Lucker J, Schwab W, Franssen MCR, Bouwmeester HJ, Verhoeven HA and Plas LHW (2004a). Metabolic engineering of terpenoid biosynthesis in tobacco using monoterpene synthases and a cytochrome P450 hydroxylase. Plant J. 39: 135–145 CrossRefGoogle Scholar
  23. Lucker J, Schwab W, Blaas J, Bouwmeester HJ and Verhoeven HA (2004b). Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon. Plant Physiol. 134: 510–519 CrossRefGoogle Scholar
  24. Mahmoud SS and Croteau RB (2001). Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc. Natl. Acad. Sci. USA 98: 8915–8920 PubMedCrossRefGoogle Scholar
  25. Mahmoud SS, Williams M and Croteau R (2004). Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochemistry 65: 547–554 PubMedCrossRefGoogle Scholar
  26. Martin VJJ, Pitera DJ, Withers ST, Newman JD and Keasling JD (2003). Engineering the mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21: 1–7 CrossRefGoogle Scholar
  27. McCaskill D and Croteau R (1998). Some caveats for bioengineering terpenoid metabolism in plants. Trends Biotechnol. 16: 349–354 CrossRefGoogle Scholar
  28. Ohara K, Ujihara T, Endo T, Sato F and Yazaki K (2003). Limonene production in tobacco with Perilla limonene synthase cDNA. J. Exp. Bot. 54: 2635–2642 PubMedCrossRefGoogle Scholar
  29. Pichersky E and Gershenzon J (2002). The formation and function of plant volatiles: perfumes for polliator attraction and defense. Curr. Opin. Plant Biol. 5: 237–243 PubMedCrossRefGoogle Scholar
  30. Schuhr CA, Radykewicz T, Sagner S, Latzel C, Zenk MH, Arigoni D, Bacher A, Rohdich F and Eisenreich W (2003). Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochem. Rev. 2: 3–16 CrossRefGoogle Scholar
  31. Steele CL, Crock J, Bohlmann J and Croteau R (1998). Sesquiterpene Synthases from Grand Fir (Abies grandis). J. Biol. Chem. 273: 2078–2089 PubMedCrossRefGoogle Scholar
  32. Tholl D, Chen F, Petri J, Gershenzon J and Pichersky E (2005). Two sesquiterpene synthses are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J. 42: 757–771 PubMedCrossRefGoogle Scholar
  33. Wallaart ET, Bouwmeester HJ, Hille J, Poppinga L and Maijers NCA (2001). Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212: 460–465 PubMedCrossRefGoogle Scholar
  34. Wang E, Wang R, DeParasis J, Loughrin JH, Gan S and Wagner GJ (2001). Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat. Biotechnol. 19: 71–374 CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Asaph Aharoni
    • 1
  • Maarten A. Jongsma
    • 2
  • Tok-Yong Kim
    • 2
    • 4
  • Man-Bok Ri
    • 2
    • 4
  • Ashok P. Giri
    • 2
    • 5
  • Francel W. A. Verstappen
    • 2
  • Wilfried Schwab
    • 3
  • Harro J. Bouwmeester
    • 2
  1. 1.Weizmann Institute of ScienceIsrael
  2. 2.Plant Research InternationalWageningenThe Netherlands
  3. 3.Biomolecular Food TechnologyMünchenGermany
  4. 4.Research Institute of AgrobiologyAcademy of Agricultural SciencesRyongsong PyongyangDemocratic People’s Republic of Korea
  5. 5.Plant Molecular Biology Unit, Division of Biochemical SciencesNational Chemical LaboratoryPuneIndia

Personalised recommendations