Advertisement

Phytochemistry Reviews

, Volume 5, Issue 1, pp 1–15 | Cite as

Early Steps in Isoprenoid Biosynthesis: Multilevel Regulation of the Supply of Common Precursors in Plant Cells

  • Manuel Rodríguez-ConcepciónEmail author
Article

Abstract

Isoprenoids are produced in all organisms but are especially abundant and diverse in plants. Two separate pathways operate in plant cells to synthesize prenyl diphosphate precursors common to all isoprenoids. Cytosolic and mitochondrial precursors are produced by the mevalonic acid (MVA) pathway whereas the recently discovered methylerythritol phosphate (MEP) pathway is located in plastids. However, both pathways may participate in the synthesis of at least some isoprenoids under certain circumstances. Although genes encoding all the enzymes from both pathways have already been cloned, little is known about the regulatory mechanisms that control the supply of isoprenoid precursors. Genetic approaches are providing valuable information on the regulation of both pathways. Thus, recent data from overexpression experiments in transgenic plants show that several enzymes share control over the metabolic flux through the MEP pathway, whereas a single regulatory step has been proposed for the MVA pathway. Identification of Arabidopsis thaliana mutants that are resistant to the inhibition of the MVA and the MEP pathways is a promising approach to uncover mechanisms involved in the crosstalk between pathways. The characterization of some of these mutants impaired in light perception and signaling has recently provided genetic evidence for a role of light as a key factor to modulate the availability of isoprenoid precursors in Arabidopsis seedlings. The picture emerging from recent data supports that a complex regulatory network appears to be at work in plant cells to ensure the supply of isoprenoid precursors when needed.

Key words

crosstalk gene expression metabolism methylerythritol phosphate pathway mutants 

Abbreviations

DMAPP

dimethylallyl diphosphate

FSM

fosmidomycin

IPP

isopentenyl diphosphate

MEP

methylerythritol 4-phosphate

MEV

mevinolin

MVA

mevalonic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam KP and Zapp J (1998). Biosynthesis of the isoprene units of chamomille sesquiterpenes. Phytochemistry 48: 953–959CrossRefGoogle Scholar
  2. Adam KP, Thiel R and Zapp J (1999). Incorporation of 1-[1–13C]deoxy-d-xylulose in chamomile sesquiterpenes. Arch. Biochem. Biophys. 369: 127–132PubMedCrossRefGoogle Scholar
  3. Aharoni A, Giri AP, Deuerlein S, Griepink F, Verstappen FW, Verhoeven HA, Jongsma MA, Schwab W and Bouwmeester HJ (2003). Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15: 2866–2884PubMedCrossRefGoogle Scholar
  4. Aharoni A, Giri AP, Verstappen FW, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W and Bouwmeester HJ (2004). Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16: 3110–3131PubMedCrossRefGoogle Scholar
  5. Alex D, Bach TJ and Chye ML (2000). Expression of Brassica juncea 3-hydroxy-3-methylglutaryl-CoA synthase is developmentally regulated and stress-responsive. Plant J. 22: 415–426PubMedCrossRefGoogle Scholar
  6. Araki N, Kusumi K, Masamoto K, Niwa Y and Iba K (2000). Temperature-sensitive Arabidopsis mutant defective in 1-deoxy-d-xylulose 5-phosphate synthase within the plastid non-mevalonate pathway of isoprenoid biosynthesis. Physiol. Plant 108: 19–24Google Scholar
  7. Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A and Zenk MH (1997). Terpenoid biosynthesis from 1-deoxy-d-xylulose in higher plants by intramolecular skeletal rearrangement. Proc. Natl. Acad. Sci. USA 94: 10600–10605PubMedCrossRefGoogle Scholar
  8. Bach TJ (1995). Some new aspects of isoprenoid biosynthesis in plants – a review. Lipids 30: 191–202PubMedGoogle Scholar
  9. Balmer Y, Koller A, del Val G, Manieri W, Schurmann P and Buchanan BB (2003). Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc. Natl. Acad. Sci. USA 100: 370–375PubMedCrossRefGoogle Scholar
  10. Besumbes O, Sauret-Güeto S, Phillips MA, Imperial S, Rodríguez-Concepción M and Boronat A (2004). Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol. Biotechnol. Bioeng. 88: 168–175PubMedCrossRefGoogle Scholar
  11. Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R and Potrykus I (2002). Golden rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J. Nutr. 132: 506S–510SPubMedGoogle Scholar
  12. Bick JA and Lange BM (2003). Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch. Biochem. Biophys. 415: 146–154PubMedCrossRefGoogle Scholar
  13. Botella-Pavía P, Besumbes O, Phillips MA, Carretero-Paulet L, Boronat A and Rodríguez-Concepción M (2004). Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant J. 40: 188–199PubMedCrossRefGoogle Scholar
  14. Bouvier F, d’Harlingue A, Suire C, Backhaus RA and Camara B (1998). Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits. Plant Physiol. 117: 1423–1431PubMedCrossRefGoogle Scholar
  15. Bouvier F, Suire C, d’Harlingue A, Backhaus RA and Camara B (2000). Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant J. 24: 241–252PubMedCrossRefGoogle Scholar
  16. Buchanan BB, Schürmann P, Wolosiuk RA and Jacquot JP (2002). The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth. Res. 73: 215–222PubMedCrossRefGoogle Scholar
  17. Budziszewski GJ, Lewis SP, Glover LW, Reineke J, Jones G, Ziemnik LS, Lonowski J, Nyfeler B, Aux G, Zhou Q, McElver J, Patton DA, Martienssen R, Grossniklaus U, Ma H, Law M and Levin JZ (2001). Arabidopsis genes essential for seedling viability, isolation of insertional mutants and molecular cloning. Genetics 159: 1765–1778PubMedGoogle Scholar
  18. Burlat V, Oudin A, Courtois M, Rideau M and St-Pierre B (2004). Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J. 38: 131–141PubMedCrossRefGoogle Scholar
  19. Carretero-Paulet L, Ahumada I, Cunillera N, Rodríguez-Concepción M, Ferrer A, Boronat A and Campos N (2002). Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-d-erythritol 4-phosphate pathway. Plant Physiol. 129: 1581–1591PubMedCrossRefGoogle Scholar
  20. Chaded K, Oudin A, Guivarc’h N, Hamdi S, Chenieux JC, Rideau M and Clastre M (2000). 1-Deoxy-d-xylulose 5-phosphate synthase, from periwinkle: cDNA identification and induced gene expression in terpenoid indole alkaloid-producing cells. Plant Physiol. Biochem. 38: 559–566CrossRefGoogle Scholar
  21. Chappell J (1995). Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 521–547CrossRefGoogle Scholar
  22. Chappell J, Wolf F, Proulx J, Cuellar R and Saunders C (1995). Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme a reductase a rate-limiting step for isoprenoid biosynthesis in plants?. Plant Physiol. 109: 1337–1343PubMedGoogle Scholar
  23. Chappell J (2002). The genetics and molecular genetics of terpene and sterol origami. Curr. Opin. Plant Biol. 5: 151–157PubMedCrossRefGoogle Scholar
  24. Charon L, Hoeffler JF, Pale-Grosdemange C, Lois LM, Campos N, Boronat A and Rohmer M (2000). Deuterium-labelled isotopomers of 2-C-methyl-d-erythritol as tools for the elucidation of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochem. J. 346: 737–742PubMedCrossRefGoogle Scholar
  25. Chattopadhyay S, Ang LH, Puente P, Deng XW and Wei N (1998). Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10: 673–683PubMedCrossRefGoogle Scholar
  26. Croteau R, Kutchan T and Lewis N (2000). Natural products (secondary metabolites). In: Buchanan, B, Gruissem, W, and Jones, R (eds) Biochemistry and Molecular Biology of Plants, pp 1250–1268. American Society of Plant Biologists, Rockville, MDGoogle Scholar
  27. Lafond TP and Gantt E (2000). Evidence of a role for lytb in the non-mevalonate pathway of isoprenoid biosynthesis. J. Bacteriol. 182: 5841–5848PubMedCrossRefGoogle Scholar
  28. Dale S, Arro M, Becerra B, Morrice NG, Boronat A, Hardie DG and Ferrer A (1995). Bacterial expression of the catalytic domain of 3-hydroxy-3-methylglutaryl-CoA reductase (isoform HMGR1) from Arabidopsis thaliana, and its inactivation by phosphorylation at Ser577 by Brassica oleracea 3-hydroxy-3-methylglutaryl-CoA reductase kinase. Eur. J. Biochem. 233: 506–513PubMedCrossRefGoogle Scholar
  29. Disch A, Hemmerlin A, Bach TJ and Rohmer M (1998). Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2 cells. Biochem. J. 331: 615–621PubMedGoogle Scholar
  30. Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W and Gershenzon J (2005). The non-mevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc. Natl. Acad. Sci. USA 102: 933–938 PubMedCrossRefGoogle Scholar
  31. Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH and Bacher A (1998). The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem. Biol. 5: R221–R233 PubMedCrossRefGoogle Scholar
  32. Eisenreich W, Rohdich F and Bacher A (2001). Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci. 6: 78–84 PubMedCrossRefGoogle Scholar
  33. Eisenreich W, Bacher A, Arigoni D and Rohdich F (2004). Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell. Mol. Life Sci. 61: 1401–1426 PubMedCrossRefGoogle Scholar
  34. Enfissi EMA, Fraser PD, Lois LM, Boronat A, Schuch W and Bramley PM (2005). Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotech. J. 3: 17–27 CrossRefGoogle Scholar
  35. Enjuto M, Balcells L, Campos N, Caelles C, Arro M and Boronat A (1994). Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme. Proc. Natl. Acad. Sci. USA 91: 927–931 PubMedCrossRefGoogle Scholar
  36. Enjuto M, Lumbreras V, Marín C and Boronat A (1995). Expression of the Arabidopsis HMG2 gene, encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase, is restricted to meristematic and floral tissues. Plant Cell 7: 517–527 PubMedCrossRefGoogle Scholar
  37. Estévez JM, Cantero A, Romero C, Kawaide H, Jiménez LF, Kuzuyama T, Seto H, Kamiya Y and León P (2000). Analysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methyl-d-erythritol-4-phosphate pathway in Arabidopsis. Plant Physiol. 124: 95–103 PubMedCrossRefGoogle Scholar
  38. Estévez JM, Cantero A, Reindl A, Reichler S and León P (2001). 1-Deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J. Biol. Chem. 276: 22901–22909 PubMedCrossRefGoogle Scholar
  39. Fell DA (1992). Metabolic control analysis: a survey of its theoretical and experimental development. Biochem. J. 286: 313–330 PubMedGoogle Scholar
  40. Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W and Bramley PM (2002). Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc. Natl. Acad. Sci. USA 99: 1092–1097 PubMedCrossRefGoogle Scholar
  41. Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM and Grierson D (1995). Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J. 8: 693–701 CrossRefGoogle Scholar
  42. Goldstein JL and Brown MS (1990). Regulation of the mevalonate pathway. Nature 343: 425–430 PubMedCrossRefGoogle Scholar
  43. Gondet L, Weber T, Maillot-Vernier P, Benveniste P and Bach TJ (1992). Regulatory role of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase in a tobacco mutant that overproduces sterols. Biochem. Biophys. Res. Commun. 186: 888–893 PubMedCrossRefGoogle Scholar
  44. Grawert T, Kaiser J, Zepeck F, Laupitz R, Hecht S, Amslinger S, Schramek N, Schleicher E, Weber S, Haslbeck M, Buchner J, Rieder C, Arigoni D, Bacher A, Eisenreich W and Rohdich F (2004). IspH protein of Escherichia coli: studies on iron–sulfur cluster implementation and catalysis. J. Am. Chem. Soc. 126: 12847–12855 PubMedGoogle Scholar
  45. Guevara-García A, San Román C, Arroyo A, Cortés ME, Gutiérrez-Nava ML and León P (2005). Characterization of the Arabidopsis clb6 mutant illustrates the importance of post-transcriptional regulation of the methyl-d-erythritol 4-phosphate pathway. Plant Cell 17: 628–643 PubMedCrossRefGoogle Scholar
  46. Gutiérrez-Nava ML, Gillmor CS, Jiménez LF, Guevara-García A and León P (2004). Chloroplast biogenesis genes act cell and non-cell autonomously in early chloroplast development. Plant Physiol. 135: 471–482 CrossRefGoogle Scholar
  47. Hans J, Hause B, Strack D and Walter MH (2004). Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-d-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize. Plant Physiol. 134: 614–624 PubMedCrossRefGoogle Scholar
  48. Harker M and Bramley PM (1999). Expression of prokaryotic 1-deoxy-d-xylulose-5-phosphatases in Escherichia coli increases carotenoid and ubiquinone biosynthesis. FEBS Lett. 448: 115–119 PubMedCrossRefGoogle Scholar
  49. Harker M, Holmberg N, Clayton JC, Gibbard CL, Wallace AD, Rawlins S, Hellyer SA, Lanot A and Safford R (2003). Enhancement of seed phytosterol levels by expression of an N-terminal truncated Hevea brasiliensis (rubber tree) 3-hydroxy-3-methylglutaryl-CoA reductase. Plant Biotechnol. J. 1: 113–121 CrossRefPubMedGoogle Scholar
  50. Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M and Bach TJ (2003). Crosstalk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J. Biol. Chem. 278: 26666–26676 PubMedCrossRefGoogle Scholar
  51. Itoh D, Karunagoda RP, Fushie T, Katoh K and Nabeta K (2000). Non-equivalent labeling of the phytyl side chain of chlorophyll a in callus of the hornwort Anthoceros punctatus. J. Nat. Prod. 63: 1090–1093 PubMedCrossRefGoogle Scholar
  52. Julliard JH and Douce R (1991). Biosynthesis of the thiazole moiety of thiamin (vitamin B1) in higher-plant chloroplasts. Proc. Natl. Acad. Sci. USA 88: 2042–2045 PubMedCrossRefGoogle Scholar
  53. Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y and Yamaguchi S (2002). Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J. Biol. Chem. 277: 45188–45194 PubMedCrossRefGoogle Scholar
  54. Kuzuyama T, Takagi M, Takahashi S and Seto H (2000). Cloning and characterization of 1-deoxy-d-xylulose 5-phosphate synthase from Streptomyces sp. Strain CL190, which uses both the mevalonate and nonmevalonate pathways for isopentenyl diphosphate biosynthesis. J. Bacteriol. 182: 891–897 PubMedCrossRefGoogle Scholar
  55. Lange BM, Wildung MR, McCaskill D and Croteau R (1998). A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc. Natl. Acad. Sci. USA 95: 2100–2104 PubMedCrossRefGoogle Scholar
  56. Lange BM and Croteau R (1999). Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: cloning and heterologous expression of 1-deoxy-d-xylulose-5-phosphate reductoisomerase from peppermint. Arch. Biochem. Biophys. 365: 170–174 PubMedCrossRefGoogle Scholar
  57. Laule O, Furholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W and Lange M (2003). Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 100: 6866–6871 PubMedCrossRefGoogle Scholar
  58. Lavy M, Zucker A, Lewinsohn E, Larkov O, Ravid U, Vainstein A and Weiss D (2002). Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol. Breed. 9: 103–111 CrossRefGoogle Scholar
  59. Learned RM (1996). Light suppresses 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in Arabidopsis thaliana. Plant Physiol. 110: 645–655 PubMedCrossRefGoogle Scholar
  60. Learned RM and Connolly EL (1997). Light modulates the spatial patterns of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in Arabidopsis thaliana. Plant J. 11: 499–511 PubMedCrossRefGoogle Scholar
  61. Leivar P, Gonzalez VM, Castel S, Trelease RN, Lopez-Iglesias C, Arro M, Boronat A, Campos N, Ferrer A and Fernandez-Busquets X (2005). Subcellular localization of Arabidopsis 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Plant Physiol. 137: 57–69 PubMedCrossRefGoogle Scholar
  62. Lemaire SD, Guillon B, Le Marechal P, Keryer E, Miginiac-Maslow M and Decottignies P (2004). New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 101: 7475–7480 PubMedCrossRefGoogle Scholar
  63. Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam KH, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W, Gepstein S and Pichersky E (2001). Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol. 127: 1256–1265 PubMedCrossRefGoogle Scholar
  64. Lichtenthaler HK, Rohmer M and Schwender J (1997). Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol. Plantarum 101: 643–652 CrossRefGoogle Scholar
  65. Lichtenthaler HK (1999). The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 47–65 PubMedCrossRefGoogle Scholar
  66. Lois LM, Campos N, Putra SR, Danielsen K, Rohmer M and Boronat A (1998). Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of d-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc. Natl. Acad. Sci. USA 95: 2105–2110 PubMedCrossRefGoogle Scholar
  67. Lois LM, Rodríguez-Concepción M, Gallego F, Campos N and Boronat A (2000). Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-d-xylulose 5-phosphate synthase. Plant J. 22: 503–513 PubMedCrossRefGoogle Scholar
  68. Lücker J, Schwab W, Blaas J, Bouwmeester HJ and Verhoeven HA (2004). Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon. Plant Physiol. 134: 510–519 PubMedCrossRefGoogle Scholar
  69. Lumbreras V, Campos N and Boronat A (1995). The use of an alternative promoter in the Arabidopsis thaliana HMG1 gene generates an mRNA that encodes a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase isoform with an extended N-terminal region. Plant J. 8: 541–549 PubMedCrossRefGoogle Scholar
  70. Mahmoud SS and Croteau RB (2001). Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc. Natl. Acad. Sci. USA 98: 8915–8920 PubMedCrossRefGoogle Scholar
  71. Mandel MA, Feldmann KA, Herrera-Estrella L, Rocha-Sosa M and León P (1996). CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J. 9: 649–658 PubMedCrossRefGoogle Scholar
  72. Manzano D, Fernandez-Busquets X, Schaller H, Gonzalez V, Boronat A, Arro M and Ferrer A (2004). The metabolic imbalance underlying lesion formation in Arabidopsis thaliana overexpressing farnesyl diphosphate synthase (isoform 1S) leads to oxidative stress and is triggered by the developmental decline of endogenous HMGR activity. Planta 219: 982–992 PubMedCrossRefGoogle Scholar
  73. McCaskill D and Croteau R (1995). Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha x piperita) rely exclusively on plastid-derived isopentenyl diphosphate. Planta 197: 49–56 CrossRefGoogle Scholar
  74. McGarvey DJ and Croteau R (1995). Terpenoid metabolism. Plant Cell 7: 1015–1026 PubMedCrossRefGoogle Scholar
  75. Miller B, Heuser T and Zimmer W (2000). Functional involvement of a deoxy-d-xylulose 5-phosphate reductoisomerase gene harboring locus of Synechococcus leopoliensis in isoprenoid biosynthesis. FEBS Lett. 481: 221–226 PubMedCrossRefGoogle Scholar
  76. Nagata N, Suzuki M, Yoshida S and Muranaka T (2002). Mevalonic acid partially restores chloroplast and etioplast development in Arabidopsis lacking the non-mevalonate pathway. Planta 216: 345–350 PubMedCrossRefGoogle Scholar
  77. Okada K, Kawaide H, Kuzuyama T, Seto H, Curtis IS and Kamiya Y (2002). Antisense and chemical suppression of the non-mevalonate pathway affects ent-kaurene biosynthesis in Arabidopsis. Planta 215: 339–344 PubMedCrossRefGoogle Scholar
  78. Oyama T, Shimura Y and Okada K (1997). The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev. 11: 2983–2995 PubMedGoogle Scholar
  79. Park H, Kreunen SS, Cuttriss AJ, DellaPenna D and Pogson BJ (2002). Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14: 321–332 PubMedCrossRefGoogle Scholar
  80. Piel J, Donath J, Bandemer K & Boland W (1998) Mevalonate-independent biosynthesis of terpenoid volatiles in plants: induced and constitutive emission of volatiles. Angew. Chemie Int. Ed. 37: 2478–2481.Google Scholar
  81. Querol J, Campos N, Imperial S, Boronat A and Rodríguez-Concepción M (2002). Functional analysis of the Arabidopsis thaliana GCPE protein involved in plastid isoprenoid biosynthesis. FEBS Lett. 514: 343–346 PubMedCrossRefGoogle Scholar
  82. Re EB, Jones D and Learned RM (1995). Co-expression of native and introduced genes reveals cryptic regulation of HMG CoA reductase expression in Arabidopsis. Plant J. 7: 771–784 PubMedCrossRefGoogle Scholar
  83. Rodríguez-Concepción M, Campos N, Maria Lois L, Maldonado C, Hoeffler JF, Grosdemange-Billiard C, Rohmer M and Boronat A (2000). Genetic evidence of branching in the isoprenoid pathway for the production of isopentenyl diphosphate and dimethylallyl diphosphate in Escherichia coli. FEBS Lett. 473: 328–332 PubMedCrossRefGoogle Scholar
  84. Rodríguez-Concepción M, Ahumada I, Diez-Juez E, Sauret-Gueto S, Lois LM, Gallego F, Carretero-Paulet L, Campos N and Boronat A (2001). 1-Deoxy-d-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Plant J. 27: 213–222 PubMedCrossRefGoogle Scholar
  85. Rodríguez-Concepción M and Boronat A (2002). Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids: a metabolic milestone achieved through genomics. Plant Physiol. 130: 1079–1089 PubMedCrossRefGoogle Scholar
  86. Rodríguez-Concepción M, Querol J, Lois LM, Imperial S and Boronat A (2003). Bioinformatic and molecular analysis of hydroxymethylbutenyl diphosphate synthase (GCPE) gene expression during carotenoid accumulation in ripening tomato fruit. Planta 217: 476–482 PubMedCrossRefGoogle Scholar
  87. Rodríguez-Concepción M (2004). The MEP pathway: a new target for the development of herbicides, antibiotics and antimalarial drugs. Curr. Pharm. Design 10: 2391–2400 CrossRefGoogle Scholar
  88. Rodríguez-Concepción M, Forés O, Martínez-García JF, González V, Phillips MA, Ferrer A and Boronat A (2004). Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development. Plant Cell 16: 144–156 PubMedCrossRefGoogle Scholar
  89. Rohdich F, Hecht S, Bacher A and Eisenreich W (2003a). The deoxyxylulose phosphate pathway of isoprenoid biosynthesis, discovery and function of the ispDEFGH genes and their cognate enzymes. Pure Appl. Chem. 75: 393–405 Google Scholar
  90. Rohdich F, Zepeck F, Adam P, Hecht S, Kaiser J, Laupitz R, Grawert T, Amslinger S, Eisenreich W, Bacher A and Arigoni D (2003b). The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by ispG and ispH protein. Proc. Natl. Acad. Sci. USA 100: 1586–1591 CrossRefGoogle Scholar
  91. Rohmer M (1999). The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16: 565–574 PubMedCrossRefGoogle Scholar
  92. Römer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W and Bramley PM (2000). Elevation of the provitamin A content of transgenic tomato plants. Nat. Biotechnol. 18: 666–669 PubMedCrossRefGoogle Scholar
  93. Schaller H, Grausem B, Benveniste P, Chye ML, Tan CT, Song YH and Chua NH (1995). Expression of the Hevea brasiliensis (h.B.K.) mull. Arg. 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 in tobacco results in sterol overproduction. Plant Physiol. 109: 761–770 PubMedGoogle Scholar
  94. Schuhr CA, Radykewicz T, Sagner S, Latzel C, Zenk MH, Arigoni D, Bacher A, Rohdich F and Eisenreich W (2003). Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochem. Rev. 2: 3–16 CrossRefGoogle Scholar
  95. Schürmann P and Jacquot JP (2000). Plant thioredoxin systems revisited. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 371–400 PubMedCrossRefGoogle Scholar
  96. Schwender J, Muller C, Zeidler J and Lichtenthaler HK (1999). Cloning and heterologous expression of a cDNA encoding 1-deoxy-d-xylulose-5-phosphate reductoisomerase of Arabidopsis thaliana. FEBS Lett. 455: 140–144 PubMedCrossRefGoogle Scholar
  97. Seemann M, Bui BT, Wolff M, Tritsch D, Campos N, Boronat A, Marquet A and Rohmer M (2002). Isoprenoid biosynthesis through the methylerythritol phosphate pathway: the (E)4hydroxy3methylbut2enyl diphosphate synthase (gcpE) is a [4Fe4S] protein. Angew. Chem. Int. Ed. Engl. 41: 4337–4339 PubMedCrossRefGoogle Scholar
  98. Seemann M, Wegner P, Schunemann V, Bui BT, Wolff M, Marquet A, Trautwein AX and Rohmer M (2005). Isoprenoid biosynthesis in chloroplasts via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (gcpE) from Arabidopsis thaliana is a [4Fe–4S] protein. J. Biol. Inorg. Chem. 10: 131–137 PubMedCrossRefGoogle Scholar
  99. Sprenger GA, Schorken U, Wiegert T, Grolle S, Taylor SV, Begley TP, Bringer-Meyer S and Sahm H (1997). Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-d-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc. Natl. Acad. Sci. USA 94: 12857–12862 PubMedCrossRefGoogle Scholar
  100. Steliopoulos P, Wust M, Adam KP and Mosandl A (2002). Biosynthesis of the sesquiterpene germacrene D in Solidago canadensis: 13C and (2)H labeling studies. Phytochemistry 60: 13–20 PubMedCrossRefGoogle Scholar
  101. Suzuki M, Kamide Y, Nagata N, Seki H, Ohyama K, Kato H, Masuda K, Sato S, Kato T, Tabata S, Yoshida S and Muranaka T (2004). Loss of function of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) in Arabidopsis leads to dwarfing, early senescence and male sterility, and reduced sterol levels. Plant J. 37: 750–761 PubMedCrossRefGoogle Scholar
  102. Takahashi S, Kuzuyama T, Watanabe H and Seto H (1998). A 1-deoxy-d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-d-erythritol 4-phosphate in an alternative non-mevalonate pathway for terpenoid biosynthesis. Proc. Natl. Acad. Sci. USA 95: 9879–9884 PubMedCrossRefGoogle Scholar
  103. Thomas S and Fell DA (1998). The role of multiple enzyme activation in metabolic flux control. Adv. Enzyme Regul. 38: 65–85 PubMedCrossRefGoogle Scholar
  104. Veau B, Courtois M, Oudin A, Chenieux J, Rideau M and Clastre M (2000). Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochim. Biophys. Acta 1517: 159–163 PubMedGoogle Scholar
  105. Walter MH, Fester T and Strack D (2000). Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. Plant J. 21: 571–578 PubMedCrossRefGoogle Scholar
  106. Walter MH, Hans J and Strack D (2002). Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J. 31: 243–254 PubMedCrossRefGoogle Scholar
  107. Welsch R, Medina J, Giuliano G and Beyer P (2003). Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana. Planta 216: 523–534 PubMedGoogle Scholar
  108. Wille A, Zimmermann P, Vranova E, Furholz A, Laule O, Bleuler S, Hennig L, Prelic A, Thiele L, Zitzler E, Gruissem W and Buhlmann P (2004). Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biol. 5: R92.1–R92.13 CrossRefGoogle Scholar
  109. Wolfertz M, Sharkey TD, Boland W and Kuhnemann F (2004). Rapid regulation of the methylerythritol 4-phosphate pathway during isoprene synthesis. Plant Physiol. 135: 1939–1945 PubMedCrossRefGoogle Scholar
  110. Wolff M, Seemann M, Tse Sum Bui B, Frapart Y, Tritsch D, Estrabot AG, Rodríguez-Concepción M, Boronat A, Marquet A and Rohmer M (2003). Isoprenoid biosynthesis via the methylerythritol phosphate pathway: The (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (lytB/ispH) from Escherichia coli is a [4Fe–4S] protein. FEBS Lett. 541: 115–120 PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Departament de Bioquímica i Biologia Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations