, Volume 56, Issue 4, pp 1326–1335 | Cite as

Coordinated variation between veins and stomata in cotton and its relationship with water-use efficiency under drought stress

  • Z. Y. Lei
  • J. M. Han
  • X. P. Yi
  • W. F. Zhang
  • Y. L. ZhangEmail author
Original paper


Drought stress causes changes in vein and stomatal density. The objectives of this study were to determine (1) if the changes in vein and stomatal density are coordinated in cotton (Gossypium hirsutum L.) and (2) how these changes affect water-use efficiency (WUE). The results showed significant positive correlations between vein density and stomatal density when cotton was grown under different degrees of drought stress. WUE was significantly positively correlated with the densities of both veins and stomata. Stomatal pore area and stomatal density on the abaxial leaf side, but not the adaxial side, were significantly correlated with WUE, stomatal conductance, leaf net photosynthetic rate, and transpiration rate. In conclusion, coordinated changes in vein and stomatal density improve the WUE of cotton under drought stress. The abaxial leaf side plays a more important role than the adaxial side in WUE and gas exchange.

Additional key words

major leaf veins maximum stomatal conductance minor leaf veins photosynthesis stomata size 



intercellular CO2 concentration


transpiration rate


stomatal conductance


mild drought stress


moderate drought stress


leaf dry mass per area


net photosynthetic rate


water-use efficiency


intrinsic water-use efficiency


well-watered treatment


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2018_847_MOESM1_ESM.pdf (124 kb)
Supplementary material, approximately 124 KB.
11099_2018_847_MOESM2_ESM.pdf (165 kb)
Supplementary material, approximately 166 KB.
11099_2018_847_MOESM3_ESM.pdf (86 kb)
Supplementary material, approximately 87 KB.
11099_2018_847_MOESM4_ESM.pdf (89 kb)
Supplementary material, approximately 90 KB.


  1. Boyce C.K., Brodribb T.J., Feild T.S. et al.: Angiosperm leaf vein evolution was physiologically and environmentally transformative.–P. Roy. Soc. B-Biol. Sci. 276: 177–776, 2009.CrossRefGoogle Scholar
  2. Brodribb T.J., Feild T.S.: Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests.–Plant Cell Environ. 23: 1381–1388, 2000.CrossRefGoogle Scholar
  3. Brodribb T.J., Feild T.S., Jordan G.J.: Leaf maximum photosynthetic rate and venation are linked by hydraulics.–Plant Physiol. 144: 1890–1898, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brodribb T.J., Jordan G.J.: Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees.–New Phytol. 192: 437–448, 2011.CrossRefPubMedGoogle Scholar
  5. Buckley T.N., John G.P., Scoffoni C. et al.: How does leaf anatomy influence water transport outside the xylem?–Plant Physiol. 168: 1616–1635, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carins M.R., Jordan G.J., Brodribb T.J.: Differential leaf expansion can enable hydraulic acclimation to sun and shade.–Plant Cell Environ. 35: 1407–1418, 2012.CrossRefGoogle Scholar
  7. Chaves M.M., Oliveira M.M.: Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture.–J. Exp. Bot. 55: 2365–2384, 2004.CrossRefPubMedGoogle Scholar
  8. Costa J.M., Ortuño M.F., Chaves M.M. et al.: Deficit irrigation as a strategy to save water: physiology and potential application to horticulture.–J. Integr. Plant Biol. 49: 1421–1434, 2007.CrossRefGoogle Scholar
  9. Dow G.J., Bergmann D.C.: Patterning and processes: how stomatal development defines physiological potential.–Curr. Opin. Plant Biol. 21: 67–74, 2014.CrossRefPubMedGoogle Scholar
  10. Drake P.L., Froend R.H., Franks P.J.: Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance.–J. Exp. Bot. 64: 495–505, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fanourakis D., Giday H., Milla R. et al.: Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides.–Ann. Bot.-London 115: 555–565, 2015.CrossRefGoogle Scholar
  12. Feild T.S., Brodribb T.J., Iglesias A. et al.: Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution.–P. Natl. Acad. Sci. USA 108: 8363–8366, 2011.CrossRefGoogle Scholar
  13. Fiorin L., Brodribb T.J., Anfodillo T.: Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves.–New Phytol. 209: 216–227, 2015.CrossRefPubMedGoogle Scholar
  14. Flexas J., Galmés J., Gallé A. et al.: Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement.–Aust. J. Grape Wine R. 16: 106–121, 2010.CrossRefGoogle Scholar
  15. Flexas J., Niinemets Ü., Gallé A. et al.: Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency.–Photosynth. Res. 117: 45–59, 2013.CrossRefPubMedGoogle Scholar
  16. Franks P.J., Beerling D.J.: Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.–P. Natl. Acad. Sci. USA 106: 10343–10347, 2009.CrossRefGoogle Scholar
  17. Franks P.J., Beerling D.J., Berner R.A.: Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.–P. Natl. Acad. Sci. USA 106: 10343–10347, 2009a.CrossRefGoogle Scholar
  18. Franks P.J., Doheny-Adams W., Britton-Harper T. et al.: Increasing water use efficiency directly through genetic manipulation of stomatal density.–New Phytol. 207: 188–195, 2015.CrossRefPubMedGoogle Scholar
  19. Franks P.J., Drake P.L., Beerling D.J.: Plasticity in maximum stomatal conductance constrained, by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus.–Plant Cell Environ. 32: 1737–1748, 2009b.CrossRefPubMedGoogle Scholar
  20. Franks P.J., Farquhar G.D. The mechanical diversity of stomata and its significance in gas-exchange control.–Plant Physiol. 143: 78–87, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Franks P.J., Farquhar G.D. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana.–Plant Physiol. 125: 935–942, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gago J., Douthe C., Florez-Sarasa I. et al.: Opportunities for improving leaf water use efficiency under climate change conditions.–Plant Sci. 226: 108–119, 2014.CrossRefPubMedGoogle Scholar
  23. Gitz D.C., Liu-Gitz L., Britz S.J. et al.: Ultraviolet-B effects on stomatal density, water-use efficiency, and stable carbon isotope discrimination in four glasshouse-grown soybean (Glyicine max) cultivars.–Environ. Exp. Bot. 53: 343–355, 2005.CrossRefGoogle Scholar
  24. Hsie B.S., Mendes K.R., Antunes W.C. et al.: Jatropha curcas L. (Euphorbiaceae) modulates stomatal traits in response to leafto-air vapor pressure deficit.–Biomass Bioenerg. 81: 273–281, 2015.CrossRefGoogle Scholar
  25. Hu J., Yang Q.Y., Huang W. et al.: Effects of temperature on leaf hydraulic architecture of tobacco plants.–Planta 240: 489–496, 2014.CrossRefPubMedGoogle Scholar
  26. John G.P., Scoffoni C., Buckley T.N. et al.: The anatomical and compositional basis of leaf mass per area.–Ecol. Lett. 20: 412–425, 2017.CrossRefPubMedGoogle Scholar
  27. Küppers M.: Carbon relations and competition between woody species in a Central European hedgerow.–Oecologia 64: 344–354, 1984.CrossRefPubMedGoogle Scholar
  28. Lauriano J.A., Ramalho J.C., Lidon F.C. et al.: Peanut photosynthesis under drought and re-watering.–Photosynthetica 42: 37–41, 2004.CrossRefGoogle Scholar
  29. Lu Z., Quiñones M.A., Zeiger E.: Abaxial and adaxial stomata from Pima cotton (Gossypium barbadense L.) differ in their pigment content and sensitivity to light quality.–Plant Cell Environ. 16: 851–858, 1993.CrossRefGoogle Scholar
  30. McKown A.D., Cochard H., Sack L.: Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution.–Am. Nat. 175: 447–460, 2010.CrossRefPubMedGoogle Scholar
  31. Meinzer F.C., Grantz D.A.: Coordination of stomatal, hydraulic, and canopy boundary layer properties: Do stomata balance conductances by measuring transpiration?–Physiol. Plantarum 83: 324–329, 1991.CrossRefGoogle Scholar
  32. Morison J.I., Baker N.R., Mullineaux P.M. et al.: Improving water use in crop production.–Philos. T. Roy. Soc. B 363: 639–658, 2008.CrossRefGoogle Scholar
  33. Noblin X., Mahadevan L., Coomaraswamy I.A. et al.: Optimal vein density in artificial and real leaves.–P. Natl. Acad. Sci. USA 105: 9140–9144, 2008.CrossRefGoogle Scholar
  34. Ocheltree T.W., Nippert J.B., Prasad P.V.: Changes in stomatal conductance along grass blades reflect changes in leaf structure.–Plant Cell Environ. 35: 1040–1049, 2008.CrossRefGoogle Scholar
  35. Parry M.A.J., Flexas J., Medrano H.: Prospects for crop production under drought: research priorities and future directions.–Ann. Appl. Biol. 147: 211–226, 2005.CrossRefGoogle Scholar
  36. Philip J.R.: Plant water relations: some physical aspects.–Annu. Rev. Plant Physio. 17: 245–268, 2003.CrossRefGoogle Scholar
  37. Rockwell F.E., Holbrook N.M., Stroock A.D.: The competition between liquid and vapor transport in transpiring leaves.–Plant Physiol. 164: 1741, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Russin W.A., Evert R.F.: Studies on the leaf of Populus deltoides (Salicaceae): Morphology and anatomy.–Am. J. Bot. 71: 1398–1415, 1984.CrossRefGoogle Scholar
  39. Sack L., Frole K.: Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees.–Ecology 87: 483–491, 2006.CrossRefPubMedGoogle Scholar
  40. Sack L., Holbrook N.M.: Leaf hydraulics.–Annu. Rev. Plant Biol. 57: 361–381, 2006.CrossRefPubMedGoogle Scholar
  41. Sack L., Scoffoni C.: Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future.–New Phytol. 198: 983–1000, 2013.CrossRefPubMedGoogle Scholar
  42. Sharpe P.J.H.: Adaxial and abaxial stomatal resistance of cotton in the field.–Agron. J. 65: 570–574, 1973.CrossRefGoogle Scholar
  43. Walls R.L.: Angiosperm leaf vein patterns are linked to leaf functions in global-scale data set.–Am. J. Bot. 98: 244–53, 2011.CrossRefPubMedGoogle Scholar
  44. Wang Y., Noguchi K., Terashima I.: Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L.–Plant Cell Environ. 31: 1307–1316, 2008.CrossRefPubMedGoogle Scholar
  45. Xu Z., Zhou G.: Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass.–J. Exp. Bot. 59: 3317–3325, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yoo C.Y., Pence H.E., Jin J.B. et al.: The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1.–Plant Cell 22: 4128–4141, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zhang S.B., Guan Z.J., Sun M. et al.: Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae.–PLoS ONE 7: e40080, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhao W.L., Siddiq Z., Fu P.L. et al.: Stable stomatal number per minor vein length indicates the coordination between leaf water supply and demand in three leguminous species.–Sci. Rep. 7: 2211, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zhou C.B., Xie C.: A simple method to quantify the size and shape of stomatal pore.–In: The Proceedings of the 17th International Congress on Photosynthesis Research, Aug. 7–12 2016. Maastricht 2016.Google Scholar
  50. Zwieniecki M.A., Boyce C.K., Holbrook N.M.: Hydraulic limitations imposed by crown placement determine final size and shape of Quercus rubra L. leaves.–Plant Cell Environ. 27: 357–365, 2004.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • Z. Y. Lei
    • 1
  • J. M. Han
    • 1
  • X. P. Yi
    • 1
  • W. F. Zhang
    • 1
  • Y. L. Zhang
    • 1
    Email author
  1. 1.Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Agricultural CollegeShihezi UniversityShihezi, XinjiangChina

Personalised recommendations