Advertisement

Photosynthetica

, Volume 56, Issue 4, pp 1304–1312 | Cite as

Changes in winter snow depth affects photosynthesis and physiological characteristics of biological soil crusts in the Tengger Desert

  • R. Hui
  • R. M. ZhaoEmail author
  • L. C. Liu
  • Y. X. Li
  • H. T. Yang
  • Y. L. Wang
  • M. Xie
  • X. Q. Wang
Original paper
  • 93 Downloads

Abstract

Water availability is a major limiting factor in desert ecosystems. However, a winter snowfall role in the growth of biological soil crusts is still less investigated. Here, four snow treatments were designed to evaluate the effects of snow depth on photosynthesis and physiological characteristics of biological soil crusts. Results showed that snow strongly affected the chlorophyll fluorescence properties. The increased snow depth led to increased contents of photosynthetic pigments and soluble proteins. However, all biological soil crusts also exhibited a decline in malondialdehyde and soluble sugar contents as snow increased. Results demonstrated that different biological soil crusts exhibited different responses to snow depth treatment due to differences in their morphological characteristics and microhabitat. In addition, interspecies differentiation in response to snow depth treatment might affect the survival of some biological soil crusts. Further, this influence might lead to changes in the structural composition and functional communities of biological soil crusts.

Additional key words

biological soil crusts chlorophyll fluorescence photosynthetic pigments soluble sugar water availability 

Abbreviations

BSC

biological soil crusts

Car

carotenoid

Chl

chlorophyll

Fv/Fm

the maximum photochemical efficiency

MDA

malondialdehyde

Yield

the effective photochemical quantum yield of PSII

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abed R.M., Polerecky L., Al-Habsi A. et al.: Rapid recovery of cyanobacterial pigments in desiccated biological soil crusts following addition of water.–PLoS ONE 9: e112372, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview.–Photosynthetica 51: 163–190, 2013.CrossRefGoogle Scholar
  3. Auton M., Rösgen J., Sinev M. et al.: Osmolyte effects on protein stability and solubility: A balancing act between backbone and side-chains.–Biophys. Chem. 159: 90–99, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water stress studies.–Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  5. Belnap J., Phillips S.L., Miller M.E.: Response of desert biological soil crusts to alterations in precipitation frequency.–Oecologia 141: 306–316, 2004.CrossRefPubMedGoogle Scholar
  6. Bosiö J., Stiegler, C., Johansson M. et al.: Increased photosynthesis compensates for shorter growing season in subarctic tundra–8 years of snow accumulation manipulations.–Climatic Change 127: 321–334, 2014.CrossRefGoogle Scholar
  7. Bowker M.A., Belnap J., Büdel B. et al.: Controls on distribution patterns of biological soil crusts at micro to global scales.–In: Weber B., Büdel B., Belnap J. (ed.): Biological Soil Crusts: An Organizing Principle in Drylands, Ecological Studies. Pp. 173–197. Springer, Berlin 2016.CrossRefGoogle Scholar
  8. Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding.–Anal. Biochem. 72: 248–254, 1976.CrossRefPubMedGoogle Scholar
  9. Callaghan T.V., Johansson M., Brown R.D. et al.: The changing face of Arctic snow cover: A synthesis of observed and projected changes.–AMBIO 40: 17–31, 2011.CrossRefGoogle Scholar
  10. Cazzonelli C.I., Pogson B.J.: Source to sink: regulation of carotenoid biosynthesis in plants.–Trends Plant Sci. 15: 266–274, 2010.CrossRefPubMedGoogle Scholar
  11. Castillo-Monroy A.P., Maestre F.T., Delgado-Baquerizo M., Gallardo A.: Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: insights from a Mediterranean grassland.–Plant Soil 333: 21–34, 2010.CrossRefGoogle Scholar
  12. Chaudhary V.B., Bowker M.A., O’Dell T.E. et al.: Untangling the biological contributions to soil stability in semiarid shrublands.–Ecol. Appl. 19: 110–122, 2009.CrossRefPubMedGoogle Scholar
  13. Colesie C., Green T.G.A., Raggio J., Büdel B.: Summer activity patterns of Antarctic and high alpine lichen-dominated biological soil crusts–Similar but different?–Arct. Antarct. Alp. Res. 48: 449–460, 2016.CrossRefGoogle Scholar
  14. Domonkos I., Kis M., Gombos Z., Ughy B.: Carotenoids, versatile components of oxygenic photosynthesis.–Prog. Lipid Res. 52: 539–561, 2013.CrossRefPubMedGoogle Scholar
  15. Eldridge D.J., Bowker M.A., Maestre F.T. et al.: Interactive effects of three ecosystem engineers on infiltration in a semiarid Mediterranean Grassland.–Ecosystems 13: 499–510, 2010.CrossRefGoogle Scholar
  16. Evans R.D., Fonda R.W.: The influence of snow on subalpine meadow community pattern, North Cascades, Washington.–Can. J. Bot. 68: 212–220, 1990.CrossRefGoogle Scholar
  17. Gharibi S., Tabatabaei B.E.S., Saeidi G., Goli S.A.H.: Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species.–Appl. Biochem. Biotech. 178: 796–809, 2016.CrossRefGoogle Scholar
  18. Grote E.E., Belnap J., Housman D.C., Sparks J.P.: Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change.–Glob. Change Biol. 16: 2763–2774, 2010.CrossRefGoogle Scholar
  19. Hashimoto H., Uragami C., Cogdell R.J.: Carotenoids and photosynthesis.–Subcell. Biochem. 79: 111–139, 2016.CrossRefPubMedGoogle Scholar
  20. Havaux M., Kloppstech K.: The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants.–Planta 213: 953–966, 2001.CrossRefGoogle Scholar
  21. Havaux M., Ksas B., Szewczyk A. et al.: Vatamin B6 deficient plants display increased sensitivity to high light and photooxidative stress.–BMC Plant Biol. 9: 130–151, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hui R., Li X.R., Chen C.Y. et al.: Responses of photosynthetic properties and chloroplast ultrastructure of Bryum argenteum from a desert biological soil crust to elevate ultraviolet-B radiation.–Physiol. Plantarum 147: 489–501, 2013.CrossRefGoogle Scholar
  23. Hui R., Li X.R., Zhao R.M. et al.: UV-B radiation suppresses chlorophyll fluorescence, photosynthetic pigment and antioxidant systems of two key species in soil crusts from the Tengger Desert, China.–J. Arid Environ. 113: 6–15, 2015.CrossRefGoogle Scholar
  24. IPCC.: Climate Change 2007: Synthesis Report, Summary for Policymakers. IPCC Plenary XXVII. Pp. 17–20. IPCC, Valencia 2007.Google Scholar
  25. Jia R.L., Li X.R., Liu L.C. et al.: Differential wind tolerance of soil crust mosses explains their micro-distribution in nature.–Soil Biol. Biochem. 45: 31–39, 2012.CrossRefGoogle Scholar
  26. Karsten U., Lembcke S., Schumann R.: The effects of ultraviolet radiation on photosynthetic performance, growth and sunscreen compounds in aeroterrestrial biofilm algae isolated from building facaded.–Planta 225: 991–1000, 2007.CrossRefPubMedGoogle Scholar
  27. Kogawara S., Yamanoshita T., Norisada M. et al.: Photosynthesis and photoassimilate transport during root hypoxia in Melaleuca cajuputi, a flood-tolerant species, and in Eucalyptus camaldulensis, a moderately flood-tolerant species.–Tree Physiol. 26: 1413–1423, 2006.CrossRefPubMedGoogle Scholar
  28. Kummerová M., Krulová J., Zezulka Š., Tríska J.: Evaluation of fluoranthene phytotoxicity in pea plants by Hill reaction and chlorophyll fluorescence.–Chemosphere 65: 489–496, 2006.CrossRefPubMedGoogle Scholar
  29. Lan S.B., Wu L., Zhang D.L., Hu C.X.: Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China).–Environ. Earth Sci. 65: 77–88, 2012.CrossRefGoogle Scholar
  30. Lan S.B., Wu L., Zhang D.L. et al.: Ethanol outperforms multiple solvents in the extraction of chlorophyll a from biological soil crusts.–Soil Biol. Biochem. 43: 857–861, 2011.CrossRefGoogle Scholar
  31. Lange O.L., Belnap J., Reichenberger H.: Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange.–Funct. Ecol. 12: 195–202, 1998.CrossRefGoogle Scholar
  32. Li J.H., Li X.R., Chen C.Y.: Degradation and reorganization of thylakoid protein complexes of Bryum argenteum in response to dehydration and rehydration.–Bryologist 117: 110–118, 2014.CrossRefGoogle Scholar
  33. Li X.R.: Study on Eco-Hydrology of Desert Biological Soil Crusts. Pp. 431–463. High Education Press, Beijing 2012.Google Scholar
  34. Li X.R., Jia R.L. Chen Y.W. et al.: Association of ant nests with successional stages of biological soil crusts in the Tengger Desert, Northern China.–Appl. Soil Ecol. 47: 59–66, 2011.CrossRefGoogle Scholar
  35. Li X.R., Jia X.H., Long L.Q., Zerbe S.: Effect of biological soil crusts on seed bank, germination and establishment of two desert annual plants.–Plant Soil 277: 375–385, 2005.CrossRefGoogle Scholar
  36. Li X.R., Zhang J.G., Wang X.P. et al.: Study on soil microbiotic crust and its influences on sand-fixing vegetation in arid desert region.–Acta Bot. Sin. 42: 965–970, 2000.Google Scholar
  37. Lu Y., Li X.R., He M.Z. et al.: Nickel effects on growth and antioxidative enzymes activities in desert plant Zygophyllum xanthoxylon (Bunge) Maxim.–Sci. Cold Arid Reg. 2: 436–444, 2010.Google Scholar
  38. Mafakheri A., Siosemardeh A., Bahramnejad B. et al.: Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars.–Aust. J. Crop Sci. 4: 580–585, 2010.Google Scholar
  39. Melick D.R., Seppelt R.D.: Loss of soluble carbohydrate and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles.–Antarct. Sci. 4: 399–404, 1992.CrossRefGoogle Scholar
  40. Mondoni A., Rossi G., Orsenigo S., Probert R.J.: Climate warming could shift the timing of seed germination in alpine plants.–Ann. Bot.-London 110: 155–164, 2012.CrossRefGoogle Scholar
  41. Olsen M.S., Callaghan T.V., Reist J.D. et al.: The changing arctic cryosphere and likely consequences: an overview.–AMBIO 40: 111–118, 2011.CrossRefGoogle Scholar
  42. Peng Q., Zhou Q.: Influence of lanthanum on chloroplast ultrastructure of soybean leaves under ultraviolet-B stress.–J. Rare Earth. 27: 304–307, 2009.CrossRefGoogle Scholar
  43. Perata P., Armstrong W., Voesenek L.A.C.J.: Plants and flooding stress.–New Phytol. 190: 269–273, 2011.CrossRefPubMedGoogle Scholar
  44. Sala O.E., Lauenroth W.K.: Small rainfall events: an ecological role in semiarid regions.–Oecologia 53: 301–304, 1982.CrossRefPubMedGoogle Scholar
  45. Salguero-Gómez R., Siewert W., Casper B.B., Tielbörger K.: A demographic approach to study effects of climate change in desert plants.–Philos. T. Roy. Soc. B 367: 3100–3114, 2012.CrossRefGoogle Scholar
  46. Sara K., Abbaspour H., Sinaki J.M., Makarian H.: Effects of water deficit and chitosan spraying on osmotic adjustment and soluble protein of cultivars castor bean (Ricinus communis L.).–J. Stress Physiol. Biochem. 8: 160–169, 2012.Google Scholar
  47. Seyyednejad M.S., Koochak H.: A study on air pollution effects on Eucalyptus camaldulensis.–In: International Conference on Environmental, Biomedical and Biotechnology. Pp. 98–101. IPCBEE. IACSIT Press, Singapore 2011.Google Scholar
  48. Sharmila P., Pardha Saradhi P.: Proline accumulation in heavy metal stressed plants: an adaptive strategy.–In: Prasad M.N.V., Strzalka K. (ed.): Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Pp. 179–199. Kluwer, Dordrecht 2010.Google Scholar
  49. Singh N.K., LaRosa P.C., Handa A.K. et al.: Hormonal regulation of protein synthesis associated with salt tolerance in plant cells.–P. Natl. Acad. Sci. USA 84: 739–743, 1987.CrossRefGoogle Scholar
  50. Sponseller R.A.: Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem.–Glob. Change Biol. 13: 426–436, 2007.CrossRefGoogle Scholar
  51. Tan B., Wu F.Z., Yang W.Q., He X.H.: Snow removal alters soil microbial biomass and enzyme activity in a Tibetan alpine forest.–Appl. Soil Ecol. 76: 34–41, 2014.CrossRefGoogle Scholar
  52. Tang B., Xu S.Z., Zou X.L. et al.: Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of waterlogging-tolerant and waterlogging-sensitive maize genotypes at seedling stage.–Agr. Sci. China 9: 651–661, 2010.CrossRefGoogle Scholar
  53. Thomas A.D., Hoon S.R., Linton P.E.: Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari.–Appl. Soil Ecol. 39: 254–263, 2008.CrossRefGoogle Scholar
  54. Wei J., Yuen E.Y., Liu W. et al.: Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition.–Mol. Psychiatr. 19: 588–598, 2014.CrossRefGoogle Scholar
  55. Wilson B.C., Jacobs D.F.: Chlorophyll fluorescence of stem cambial tissue reflects dormancy development in Juglans nigra seedlings.–New Forest. 43: 771–778, 2012.CrossRefGoogle Scholar
  56. Wipf S., Rixen C.: A review of snow manipulation experiments in Arctic and alpine tundra ecosystems.–Polar Res. 29: 95–109, 2010.CrossRefGoogle Scholar
  57. Wu L., Lei Y., Lan S., Hu C.: Photosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts.–PLoS ONE 12: e0172537, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhao R.M., Hui R., Wang Z.R. et al.: Winter snowfall can have a positive effect on photosynthetic carbon fixation and biomass accumulation of biological soil crusts from the Gurbantunggut Desert, China.–Ecol. Res. 31: 251–262, 2016.CrossRefGoogle Scholar
  59. Zhao Y., Li X.R., Zhang Z.S. et al.: Biological soil crusts influence carbon release responses following rainfall in a temperate desert, northern China.–Ecol. Res. 29: 889–896, 2014.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • R. Hui
    • 1
  • R. M. Zhao
    • 2
    Email author
  • L. C. Liu
    • 1
  • Y. X. Li
    • 3
  • H. T. Yang
    • 1
  • Y. L. Wang
    • 1
  • M. Xie
    • 1
  • X. Q. Wang
    • 4
  1. 1.Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  2. 2.School of Life SciencesLanzhou UniversityLanzhouChina
  3. 3.College of AgronomyShenyang Agricultural UniversityShenyangChina
  4. 4.Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina

Personalised recommendations