Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Chlorophyll fluorescence and gas exchange measurements in field research: an ecological case study


We tested whether cheap and quick chlorophyll (Chl) fluorescence can be used in ecophysiological field studies as proxies for gas-exchange measurements. We measured net photosynthetic rate at saturating irradiance and ambient atmospheric CO2 concentrations (PNsat), maximum carboxylation rate (Vcmax), maximum quantum yield of PSII (Fv/Fm), the performance index (PIabs), leaf nitrogen (Narea), and carbon isotope discrimination (Δ13C) within four herbaceous species along two elevational gradients. We analysed the relationship between Chl fluorescence and gas-exchange parameters and their link to indirect assessment of plant performance via ecophysiological traits. Fv/Fm showed no relationship to PNsat and only weak relationships to Vcmax. PIabs was positively related to PNsat and Vcmax. PIabs, PNsat, and Vcmax were positively associated with Narea and negatively to Δ13C, whereas Fv/Fm showed no relationship to Narea and a positive to Δ13C. Thus, PIabs might be suitable to characterize the photosynthetic activity when aiming on large numbers of samples.

This is a preview of subscription content, log in to check access.




Fv/Fm :

maximum quantum yield of PSII

Narea :

area based leaf nitrogen content

PIabs :

absorption based performance index

P Nsat :

net photosynthetic rate at saturating irradiance and ambient atmospheric CO2 concentrations

Vcmax :

maximum carboxylation rate


carbon isotope discrimination


  1. Adams III W.W., Zarter C.R., Ebbert V. et al.: Photoprotective strategies of overwintering evergreens.–BioScience 54: 41–49, 2004.

  2. Barton K.: Multi-Model Inference. R Package Version 1.15. 6 2016.

  3. Bates D., Mächler M., Bolker B. et al.: Fitting linear mixedeffects models using Ime4.–J. Stat. Softw. 67: 1–48, 2015.

  4. Bernacchi C., Singsaas E., Pimentel C. et al.: Improved temperature response functions for models of Rubisco-limited photosynthesis.–Plant Cell Environ. 24: 253–259, 2001.

  5. Boardman N.K.: Comparative photosynthesis of sun and shade plants.–Annu. Rev. Plant Physiol. 28: 355–377, 1977.

  6. Bond B.J., Farnsworth B.T., Coulombe R.A. et al.: Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance.–Oecologia 120: 183–192, 1999.

  7. Bucher S.F., Auerswald K., Grün-Wenzel C. et al.: Stomatal traits relate to habitat preferences of herbaceous species in a temperate climate.–Flora 229: 107–115, 2017.

  8. Bucher S.F., Auerswald K., Tautenhahn S. et al.: Inter-and intraspecific variation in stomatal pore area index along elevational gradients and its relation to leaf functional traits.–Plant Ecol. 217: 229–240, 2016.

  9. Clark A.J., Landolt W., Bucher J. et al.: Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index.–Environ. Pollut. 109: 501–507, 2000.

  10. Collatz G.J., Ball J.T., Grivet C. et al.: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer.–Agr. Forest Meteorol. 54: 107–136, 1991.

  11. Crawley M.J.: The R Book. Pp. 681–713. John Wiley & Sons, Chichester 2012.

  12. de Bello F., Lavorel S., Díaz S. et al.: Towards an assessment of multiple ecosystem processes and services via functional traits.–Biodivers. Conserv. 19: 2873–2893, 2010.

  13. De Kauwe M.G., Lin Y.S., Wright I.J. et al.: A test of the ‘onepoint method’for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis.–New Phytol. 210: 1130–1144, 2015.

  14. Demmig-Adams B., Adams III W.W., Winter K. et al.: Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the midday depression of net CO2 uptake in Arbutus unedo growing in Portugal.–Planta 177: 377–387, 1989.

  15. Desotgiu R., Pollastrini M., Cascio C. et al.: Responses to ozone on Populus “Oxford” clone in an open top chamber experiment assessed before sunrise and in full sunlight.–Photosynthetica 51: 267–280, 2013.

  16. Dias M., Brüggemann W.: Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes.–Photosynthetica 48: 96–102, 2010.

  17. Dinç E., Ceppi M.G., Tóth S.Z. et al.: The chl a fluorescence intensity is remarkably insensitive to changes in the chlorophyll content of the leaf as long as the chl a/b ratio remains unaffected.–BBA-Bioenergetics 1817: 770–779, 2012.

  18. Ellenberg H.: Indicator values of vascular plants in central Europe.–Scripta Geobot. 9: 97, 1974.

  19. Ellenberg H., Weber H., Dul R. et al.: [Indicator values of Centraleuropean plant species.]–Scripta Geobot. 18: 248, 1991. [In German]

  20. Evans J.R.: Photosynthesis and nitrogen relationships in leaves of C3 plants.–Oecologia 78: 9–19, 1989.

  21. Farquhar G.D., Ehleringer J.R., Hubick K.T.: Carbon isotope discrimination and photosynthesis.–Annu. Rev. Plant Phys. 40: 503–537, 1989.

  22. Farquhar G.D., von Caemmerer S., Berry J.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.–Planta 149: 78–90, 1980.

  23. Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.–Biochim. Biophys. Acta 990: 87–92, 1989.

  24. Giorio P.: Black leaf-clips increased minimum fluorescence emission in clipped leaves exposed to high solar radiation during dark adaptation.–Photosynthetica 49: 371–379, 2011.

  25. Grassi G., Vicinelli E., Ponti F. et al.: Seasonal and interannual variability of photosynthetic capacity in relation to leaf nitrogen in a deciduous forest plantation in northern Italy.–Tree Physiol. 25: 349–360, 2005.

  26. Heber U.: Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants.–Photosynth. Res. 73: 223–231, 2002.

  27. Holland V., Koller S., Brüggemann W.: Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis.–Plant Biol. 16: 801–808, 2014.

  28. Jenkins G., Woolhouse H.: Photosynthetic electron transport during senescence of the Primary leaves of Phaseolus vulgaris L.: I. Non-cyclic electron transport.–J. Exp. Bot. 32: 467–478, 1981.

  29. Kalaji M.H., Goltsev V.N., Zuk-Golaszewska K. et al.: Chlorophyll fluorescence: understanding crop performance.–Basics and Applications. Pp. 236. CRC Press Taylor & Francis Group, Boca Raton 2017a.

  30. Kalaji H.M., Schansker G., Brestic M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel.–Photosynth. Res. 132: 13–66, 2017b.

  31. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues.–Photosynth. Res. 122: 121–158, 2014.

  32. Kattge J., Knorr W., Raddatz T. et al.: Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models.–Glob. Change Biol. 15: 976–991, 2009.

  33. Kautsky H., Franck U.: [Chlorophyll fluorescence and carbonic acid assimilation.]–Biochem. Z. 315: 139–232, 1943. [In German]

  34. Kitajima M., Butler W.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone.–BBA-Bioenergetics 376: 105–115, 1975.

  35. Körner C.: Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems; with 47 Tables. Pp. 349. Springer Science & Business Media, Berlin–Heidelberg–New York 2003.

  36. Küppers M., Swan A., Tompkins D. et al.: A field portable system for the measurement of gas exchange of leaves under natural and controlled conditions: examples with field-grown Eucalyptus pauciflora Sieb. ex Spreng. ssp. pauciflora, E. behriana F. Muell. and Pinus radiata R. Don.–Plant Cell Environ. 10: 425–435, 1987.

  37. Kuznetsova A., Brockhoff P.B., Christensen R.H.B.: ImerTest: Tests in Linear Mixed Effects Models. R Package Version 2.0-29, 2015.

  38. Lakowicz J.R., Masters B.R.: Principles of Fluorescence Spectroscopy. Pp. 954. Springer Science & Business Media, Berlin–Heidelberg–New York 2006.

  39. Larcher W.: [Ecophysiology of Plants.] Pp. 408. Eugen Ulmer Verlag, Stuttgart 1994. [In German] Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light.–Funct. Plant Biol. 33: 9–30, 2006.

  40. Lichtenthaler H., Buschmann C., Knapp M.: How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer.–Photosynthetica 43: 379–393, 2005.

  41. Lichtenthaler H., Buschmann C., Rinderle U. et al.: Application of chlorophyll fluorescence in ecophysiology.–Radiat. Environ. Bioph. 25: 297–308, 1986.

  42. Maxwell K., Johnson G. N.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.

  43. Medrano H., Escalona J. M., Bota J. et al.: Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter.–Ann. Bot.-London 89: 895–905, 2002.

  44. Nakagawa S., Schielzeth H.: A general and simple method for obtaining R2 from generalized linear mixed-effects models.–Methods Ecol. Evol. 4: 133–142, 2013.

  45. Neuner G., Ambach D., Aichner K.: Impact of snow cover on photoinhibition and winter desiccation in evergreen Rhododendron ferrugineum leaves during subalpine winter.–Tree Physiol. 19: 725–732, 1999.

  46. Neuner G., Pramsohler M.: Freezing and high temperature thresholds of photosystem 2 compared to ice nucleation, frost and heat damage in evergreen subalpine plants.–Physiol. Plantarum 126: 196–204, 2006.

  47. Ögren E., Sjöström M.: Estimation of the effect of photoinhibition on the carbon gain in leaves of a willow canopy.–Planta 181: 560–567, 1990.

  48. Öquist G., Huner N.P.: Photosynthesis of overwintering evergreen plants.–Annu. Rev. Plant Biol. 54: 329–355, 2003.

  49. Parkhurst D.F.: Diffusion of CO2 and other gases inside leaves.–New Phytol. 126: 449–479, 1994.

  50. Pérez-Harguindeguy N., Díaz S., Garnier E. et al.: New handbook for standardised measurement of plant functional traits worldwide.–Aust. J. Bot. 61: 167–234, 2013.

  51. Pflug E., Brüggemann W.: Frost-acclimation of photosynthesis in overwintering Mediterranean holm oak, grown in Central Europe.–Int. J. Plant Biol. 3: e1, 2012.

  52. R Development Core Team.: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna 2016.

  53. Rogers A., Humphries S.W.: A mechanistic evaluation of photosynthetic acclimation at elevated CO2.–Glob. Change Biol. 6: 1005–1011, 2000.

  54. Römermann, C., S.F. Bucher, Hahn M., Bernhardt-Römermann M.: Plant functional traits–fixed facts or variable depending on the season?–Folia Geobot. 51: 143–159, 2016.

  55. Schreiber U., Bilger W., Neubauer C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis.–In: Schulze E.D., Caldwell M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49–70. Springer-Verlag, Berlin–Heidelberg–New York 1995.

  56. Schreiber U., Fink R., Vidaver W.: Fluorescence induction in whole leaves: differentiation between the two leaf sides and adaptation to different light regimes.–Planta 133: 121–129, 1977.

  57. Sharma D.K., Andersen S.B., Ottosen C.O. et al.: Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter.–Physiol. Plantarum 153: 284–298, 2015.

  58. Strasser R.J., Srivastava A., Tsimilli-Michael M.: Screening the vitality and photosynthetic activity of plants by fluorescence transient.–In: Behl R.K., Punia M.S., Lather B.P.S. (ed.): Crop Improvement for Food Security. Pp. 72–115. SSARM, Hisar 1999.

  59. Strasser R. J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples.–In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445–483. Taylor & Francis, Bristol 2000.

  60. Strasser R. J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria.–Photochem. Photobiol. 61: 32–42, 1995.

  61. Suresh K., Nagamani C., Kantha D.L., Kumar M.K.: Changes in photosynthetic activity in five common hybrids of oil palm (Elaeis guineensis Jacq.) seedlings under water deficit.–Photosynthetica 50: 549–556, 2012.

  62. Sušila P., Lazár D., Ilík P. et al.: The gradient of exciting radiation within a sample affects the relative height of steps in the fast chlorophyll a fluorescence rise.–Photosynthetica 42: 161–172, 2004.

  63. Troeng E., Linder S.: Gas exchange in a 20-year-old stand of Scots pine.–Physiol. Plantarum 54: 7–14, 1982.

  64. Tyystjärvi E., Koski A., Keränen M. et al.: The Kautsky curve is a built-in barcode.–Biophys. J. 77: 1159–1167, 1999.

  65. Violle C., Navas M.L., Vile D. et al.: Let the concept of trait be functional!–Oikos 116: 882–892, 2007.

  66. Vogelmann T.C.: Plant tissue optics.–Annu. Rev. Plant Biol. 44: 231–251, 1993.

  67. Vogelmann T.C., Evans J.: Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence.–Plant Cell Environ. 25: 1313–1323, 2002.

  68. von Caemmerer S., Farquhar G.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.–Planta 153: 376–387, 1981.

  69. Wickham H.: ggplot2–Elegant Graphics for Data Analysis. Pp. 224. Springer Science & Business Media, Berlin–Heidelberg–New York 2009.

  70. Wild A., Rühle W., Grahl H.: The effect of light intensity during growth of Sinapis alba on the electron-transport and the noncyclic photophosphorylation.–In: Marcelle R. (ed.): Environmental and Biological Control of Photosynthesis. Pp. 115–121. Springer-Verlag, Berlin–Heidelberg–New York 1975.

  71. Wilson K.B., Baldocchi D.D., Hanson P.J.: Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest.–Tree Physiol. 20: 565–578, 2000.

  72. Zaehle S., Sitch S., Smith B. et al.: Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics.–Global Biogeochem. Cy. 19: GB3020, 2005.

  73. Živcák M., Brestic M., Olšovská K. et al.: Performance index as a sensitive indicator of water stress in Triticum aestivum L.–Plant Soil Environ. 54: 133–139, 2008.

Download references

Author information

Correspondence to S. F. Bucher.

Additional information

Acknowledgements: The authors would like to thank the members of the Institute of Botany at the University of Regensburg and the Institute of Systematic Botany at the FSU Jena for practical assistance and valuable discussions. We are grateful for the assistance and analysation of nitrogen at the Technical University of Munich, Grassland group, and financial support for this analysis from the German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig. We would also like to thank Anna Geiger and Johanna Otto for practical assistance in the field and Prof. Dr. Manfred Küppers as well as Dr. Jens Kattge for valuable discussions and suggestions. We are grateful about the Eliteförderung des Landes Bayern for provision of a scholarship (granted to S.F. Bucher) and the Universities of Regensburg and Jena. The work of C. Römermann and M. Bernhardt–Römermann was partly funded by the DFG (German Research Foundation, RO 3842/3–1 and BE 4143/2–1). We also acknowledge support from the Bavarian State Forest Enterprise and the district government of upper Bavaria.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bucher, S.F., Bernhardt–Römermann, M. & Römermann, C. Chlorophyll fluorescence and gas exchange measurements in field research: an ecological case study. Photosynthetica 56, 1161–1170 (2018).

Download citation

Additional key words

  • Aposeris foetida
  • carbon isotope discrimination
  • Knautia dipsacifolia
  • leaf nitrogen
  • Mercurialis perennis
  • Trifolium pratense