, Volume 56, Issue 4, pp 1081–1092 | Cite as

Effects of GeO2 on chlorophyll fluorescence and antioxidant enzymes in apple leaves under strong light

  • Z. B. Wang
  • Y. F. Wang
  • J. J. Zhao
  • L. Ma
  • Y. J. Wang
  • X. Zhang
  • Y. T. Nie
  • Y. P. Guo
  • L. X. Mei
  • Z. Y. Zhao
Original paper


In this study, we chose apple leaf as plant material and studied effects of GeO2 on operation of photosynthetic apparatus and antioxidant enzyme activities under strong light. When exogenous GeO2 concentration was below 5.0 mg L–1, maximum photochemical quantum yield of PSII and actual quantum yield of PSII photochemistry increased significantly compared with the control under irradiances of 800 and 1,600 μmol(photon) m–2 s–1. Photosynthetic electron transport chain capacity between QA–QB, QA–PSI acceptor, and QB–PSI acceptor showed a trend of rising up with 1.0, 2.0, and 5.0 mg(GeO2) L–1 and declining with 10.0 mg(GeO2) L–1. On the other hand, dissipated energy via both ΔpH and xanthophyll cycle decreased remarkably compared with the control when GeO2 concentration was below 5.0 mg L–1. Our results suggested that low concentrations of GeO2 could alleviate photoinhibition and 5.0 mg(GeO2) L–1 was the most effective. In addition, we found, owing to exogenous GeO2 treatment, that the main form of this element in apple leaves was organic germanium, which means chemical conversion of germanium happened. The organic germanium might be helpful to allay photoinhibition due to its function of scavenging free radicals and lowering accumulation of reactive oxygen species, which was proven by higher antioxidant enzyme activities.

Additional key words

chlorophyll fluorescence irradiance photodamage photosynthetic electron transport chain 



absorption flux


absorption flux per reaction center of PSII


absorption flux per sample cross section


ascorbate peroxidase




phenomenological energy fluxes per excited cross section


dehydroascorbate reductase


dissipated energy flux per sample cross section


dissipated energy flux per reaction center of PSII


dry mass


fresh mass


maximal fluorescence


initial fluorescence


maximum photochemical quantum yield of PSII


actual photochemical efficiency


steady-state fluorescence


guaiacol peroxidase


glutathione reductase


monodehydroascorbate reductase


nonphotochemical quenching coefficient


fast chlorophyll fluorescence transients


photosynthetic electron transport chain




photochemical quenching coefficient


specific energy fluxes per active PSII reaction center


reactive oxygen species


superoxide dismutase


flux of energy trapping per sample cross-section


flux of energy trapping per reaction center of PSII


relative variable fluorescence at the I-step


relative variable fluorescence at the J-step


quantum yield of non-light-induced nonphotochemical fluorescence quenching


quantum yield of light-induced ΔpH and zeaxanthin-dependent


actual quantum yield of PSII photochemistry


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams J.H., Thomas D.: Germanium and germanium compounds.–In: Kirk-Othmer (ed.): Encyclopedia of Chemical Technology. Pp. 540–555. Wiley, New York 1994.Google Scholar
  2. Apel K., Hirt H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction.–Annu. Rev. Plant Biol. 55: 373–399, 2004.CrossRefPubMedGoogle Scholar
  3. Balarinová K., Barták M., Hazdrová J. et al.: Changes in photosynthesis, pigment composition and glutathione contents in two Antarctic lichens during a light stress and recovery.–Photosynthetica 52: 538–547, 2014.CrossRefGoogle Scholar
  4. Bilger W., Björkman O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis.–Photosynth. Res. 25: 173–185, 1990.CrossRefPubMedGoogle Scholar
  5. Chen C., Li H., Zhang D. et al.: The role of anthocyanin in photoprotection and its relationship with the xanthophyll cycle and the antioxidant system in apple peel depends on the light conditions.–Physiol. Plantarum 149: 354–366, 2013.CrossRefGoogle Scholar
  6. Cheong Y.H., Kim S.U., Seo D.C. et al.: Effect of inorganic and organic germanium treatments on the growth of lettuce (Lactuca sativa).–J. Korean Soc. Appl. Bi. 52: 389–396, 2009.CrossRefGoogle Scholar
  7. Díaz-Vivancos P., Clemente-Moreno M.J., Rubio M. et al.: Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus.–J. Exp. Bot. 59: 2147–2160, 2008CrossRefPubMedPubMedCentralGoogle Scholar
  8. Diao M., Ma L., Wang J.W.: Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system.–J. Plant Growth Regul. 33: 671–682, 2014.CrossRefGoogle Scholar
  9. Garg N., Manchanda G.: ROS generation in plants: boon or bane?–Plant Biosyst. 143: 81–96, 2009.CrossRefGoogle Scholar
  10. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.–Biochim. Biophys. Acta 990: 87–92, 1989.CrossRefGoogle Scholar
  11. Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.–Plant Physiol. Bioch. 48: 909–930, 2010.CrossRefGoogle Scholar
  12. Goodman S.: Therapeutic effects of organic germanium.–Med. Hypotheses 26: 207–215, 1988.CrossRefPubMedGoogle Scholar
  13. Halperin S.J., Barzilay A., Carson M. et al.: Germanium accumulation and toxicity in barley.–J. Plant Nutr. 18: 1417–1426, 1995.CrossRefGoogle Scholar
  14. Han M.J., Kim S.U., Seo D.C. et al.: Uptake properties of germanium to vegetable plants and its effect on seed germination and on early stage growth.–Korean J. Environ. Agric. 26: 217–222, 2007.CrossRefGoogle Scholar
  15. Hasanuzzaman M., Fujita M.: Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings.–Biol. Trace Elem. Res. 143: 1758–1776, 2011.CrossRefPubMedGoogle Scholar
  16. Henriques F.S.: Leaf chlorophyll fluorescence: background and fundamentals for plant biologists.–Bot. Rev. 75: 249–270, 2009.CrossRefGoogle Scholar
  17. Jahns P., Holzwarth A.R.: The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II.–Biochim. Biophys. Acta 1817: 182–193, 2012.CrossRefPubMedGoogle Scholar
  18. Kaplan B.J., Parish W.W., Andrus G.M. et al.: Germane facts about germanium sesquioxide: I. Chemistry and anticancer properties.–J. Altern. Complem. Med. 10: 337–344, 2004.CrossRefGoogle Scholar
  19. Kitajima M., Butler W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone.–Biochim. Biophys. Acta 376: 105–115, 1975.CrossRefPubMedGoogle Scholar
  20. Kramer D.M., Johnson G., Kiirats O., Edwards G.E.: New fluxparameters for the determination of QA redox state and excitation fluxes.–Photosynth. Res. 79: 209–218, 2004.CrossRefPubMedGoogle Scholar
  21. Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light.–Funct. Plant Biol. 33: 9–30, 2006.CrossRefGoogle Scholar
  22. Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.–Methods Enzymol. 148: 350–382, 1987.CrossRefGoogle Scholar
  23. Li L., Zhou Z., Liang J., Lv R.: In vivo evaluation of the highirradiance effects on PSII activity in photosynthetic stems of Hexinia polydichotoma.–Photosynthetica 53: 621–624, 2015.CrossRefGoogle Scholar
  24. Lim J.S., Seo D.C., Park W.Y. et al.: Effects of soil texture on germanium uptake and growth in rice plant by soil application with germanium.–Korean J. Environ. Agric. 27: 245–252, 2008.CrossRefGoogle Scholar
  25. Liu Y., Hou L.Y., Li Q.M. et al.: The effects of exogenous antioxidant germanium (Ge) on seed germination and growth of Lycium ruthenicum Murr subjected to NaCl stress.–Environ. Technol. 37: 909–919, 2016.CrossRefPubMedGoogle Scholar
  26. Matsumoto H., Syo S., Takahashi E.: Translocation and some forms of germanium in rice plants.–Soil Sci. Plant Nutr. 21: 273–279, 1975.CrossRefGoogle Scholar
  27. McMahon M., Regan F., Hughes H.: The determination of total germanium in real food samples including Chinese herbal remedies using graphite furnace atomic absorption spectroscopy.–Food Chem. 97: 411–417, 2006.CrossRefGoogle Scholar
  28. Meyer S., Saccardy-Adji K., Rizza F., Genty B.: Inhibition of photosynthesis by Colletotrichum lindemuthianum in bean leaves determined by chlorophyll fluorescence imaging.–Plant Cell Environ. 24: 947–955, 2001.CrossRefGoogle Scholar
  29. Munakata T., Agai S., Kuwano K. et al.: Induction of interferon production by natural killer cells by organogermanium compound Ge-132.–J. Interferon Res. 7: 69–76, 1987.CrossRefPubMedGoogle Scholar
  30. Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.–Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  31. Nickel R.S., Cunningham B.A.: Improved peroxidase assay method using leuco 2,3,6-trichloroindophenol and application to comparative measurements of peroxidase catalysis.–Anal. Physiol. 172: 385–390, 1969.Google Scholar
  32. Rao K.V.M., Sresty T.V.S.: Antioxidant parameters in the seedlings of pigeon pea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses.–Plant Sci. 157: 113–128, 2000.CrossRefGoogle Scholar
  33. Rosenberg E.: Germanium: environmental occurrence, importance and speciation.–Rev. Environ. Sci. Bio. 8: 29–57, 2009.CrossRefGoogle Scholar
  34. Schansker G., Tóth S.Z., Strasser R.J.: Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP.–Biochim. Biophys. Acta 1706: 250–261, 2005.CrossRefPubMedGoogle Scholar
  35. Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.–Photosynth. Res. 10: 51–62, 1986.CrossRefPubMedGoogle Scholar
  36. Seo D.C., Cheon Y.S., Park S.K. et al.: [Applications of different types of germanium compounds on rice plant growth and its Ge uptake.]–Korean J. Soil Sci. Fertil. 43: 166–173, 2010. [In Korean]Google Scholar
  37. Sparks J.P., Chandra S., Derry L.A. et al.: Subcellular localization of silicon and germanium in grass root and leaf tissues by SIMS: evidence for differential and active transport.–Biogeochemistry 104: 237–249, 2011.CrossRefGoogle Scholar
  38. Stepien P., Klobus G.: Antioxidant defense in the leaves of C3 and C4 plants under salinity stress.–Physiol. Plantarum 125: 31–40, 2005.CrossRefGoogle Scholar
  39. Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient.–J. Photoch. Photobio. B 104: 236–257, 2011.CrossRefGoogle Scholar
  40. Strasser R.J.A., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples.–In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445–483. Taylor and Francis, London 2000.Google Scholar
  41. Takahashi S., Murata N.: How do environmental stresses accelerate photoinhibition?–Trends Plant Sci. 13: 178–182, 2008.CrossRefPubMedGoogle Scholar
  42. Tang Z., Shi Y., Zhou J.P. et al.: Effects of an organogermanium compound on antioxidant function of vMDV-infected chickens.–Chinese J. Vet. Sci. 17: 173–176, 1997. [In Chinese]Google Scholar
  43. Tarakhovskaya E.R., Kang E.J., Kim K.Y., Garbary D.J.: Effect of GeO2 on embryo development and photosynthesis in Fucus vesiculosus (Phaeophyceae).–Algae 27: 125–134, 2012.CrossRefGoogle Scholar
  44. Yang M.K., Kim Y.G.: Protective role of germanium-132 against paraquat-indrced oxidative stress in the livers of senescence -accelerated mice.–J. Toxicol. Environ. Health A 58: 289–297, 1999.CrossRefPubMedGoogle Scholar
  45. Wang Z.X., Chen L., Ai J. et al.: Photosynthesis and activity of photosystem II in response to drought stress in Amur Grape (Vitis amurensis Rupr.).–Photosynthetica 50: 189–196, 2012.CrossRefGoogle Scholar
  46. Yu K.W., Murthy H.N., Jeong C.S. et al.: Organic germanium stimulated the growth of ginseng dventitious roots and ginsenoside production.–Process. Biochem. 40: 2959–2961, 2005.CrossRefGoogle Scholar
  47. Zai X.M., Zhu S.N., Qin P. et al.: Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress.–Photosynthetica 50: 323–328, 2012.CrossRefGoogle Scholar
  48. Zhang J.X., Kirkham M.B.: Antioxidant responses to drought in sunflower and sorghum seedlings.–New Phytol. 132: 361–373, 1996.CrossRefPubMedGoogle Scholar
  49. Zhang M., Tang S.U., Huang X. et al.: Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.).–Environ. Exp. Bot. 107: 39–45, 2014.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • Z. B. Wang
    • 1
  • Y. F. Wang
    • 1
  • J. J. Zhao
    • 1
  • L. Ma
    • 1
  • Y. J. Wang
    • 1
  • X. Zhang
    • 1
  • Y. T. Nie
    • 1
  • Y. P. Guo
    • 1
    • 2
  • L. X. Mei
    • 1
  • Z. Y. Zhao
    • 1
    • 3
  1. 1.College of HorticultureNorthwest A&F UniversityYangling, ShaanxiChina
  2. 2.Key Laboratory of Horticulture Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureNorthwest A&F UniversityYangling, ShaanxiChina
  3. 3.Shaanxi Engineering Research Center for AppleYangling, ShaanxiChina

Personalised recommendations