Photosynthetica

, Volume 56, Issue 1, pp 1–10 | Cite as

Foreword

  • Julian J. Eaton-Rye
Article
  • 65 Downloads

References

  1. Acuña A.M., van Alphen P., van Grondelle R., van Stokkum I.H.M.: The phycobilisome terminal emitter transfers its energy with a rate of (20 ps)-1 to Photosystem II.–Photosynthetica 56: 265–274, 2018.Google Scholar
  2. Ananyev G., Gates C., Dismukes G.C.: The multiplicity of roles for (bi)carbonate in Photosystem II operation in the hypercarbonate-requiring cyanobacterium Arthrospira maxima.–Photosynthetica 56: 217–228, 2018.Google Scholar
  3. Atomic Heritage Foundation: Eugene Rabinowitch. {unwww.atomicheritage.org/profile/eugene-rabinowitch (accessed 12 March, 2018).Google Scholar
  4. Biswal B., Pandey J.K.: Loss of photosynthesis signals a metabolic reprogramming to sustain sugar homeostasis during senescence of green leaves: Role of cell wall hydrolases.–Photosynthetica 56: 404–410, 2018.Google Scholar
  5. Biswas S., Eaton-Rye J.J.: PsbY is required for prevention of photodamage to photosystem II in a PsbM-lacking mutant of Synechocystis sp. PCC 68093.–Photosynthetica 56: 200–209, 2018.Google Scholar
  6. Borisov A.Yu., Björn L.O.: On oxygen production by photosynthesis: A viewpoint–Photosynthetica 56: 44–47, 2018.Google Scholar
  7. Brody S.S.: New excited state of chlorophyll.–Science 128: 838, 1958.CrossRefPubMedGoogle Scholar
  8. Chen H.-Y.S., Bandyopadhyay A., Pakrasi H.B.: Function, regulation and distribution of IsiA, a membrane-bound chlorophyll a-antenna protein in cyanobacteria.–Photosynthetica 56: 322–333, 2018.Google Scholar
  9. Clegg R.M.: Contributions of Govindjee, 2000-2011.–In: Eaton-Rye J.J., Tripathy B.C., Sharkey T.D. (ed.): Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation. Advances in Photosynthesis and Respiration, vol. 34. Pp. 845–856. Springer, Dordrecht 2012.Google Scholar
  10. de Vault D., Govindjee, Arnold W.: Energetics of photosynthetic glow peaks.–P. Natl. Acad. Sci. USA 80: 983–987, 1983.CrossRefGoogle Scholar
  11. Eaton-Rye J.J.: Celebrating Govindjee’s 50 years in photosynthesis research and his 75th birthday.–Photosynth. Res. 93: 1–5, 2007a.CrossRefPubMedGoogle Scholar
  12. Eaton-Rye J.J.: Snapshots of the Govindjee lab from the late 1960s to the late 1990s and beyon.–Photosynth. Res. 94: 153–178, 2007b.CrossRefGoogle Scholar
  13. Eaton-Rye J.J.: Contributions of Govindjee, 1970-1999.–In: Eaton-Rye J.J., Tripathy B.C., Sharkey T.D. (ed.): Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation. Advances in Photosynthesis and Respiration, vol. 34. Pp. 815–834. Springer, Dordrecht 2012.CrossRefGoogle Scholar
  14. Eaton-Rye, J.J.: Govindjee at 80: more then 50 years of free energy for photosynthesis.–Photosynth. Res. 116: 111–144, 2013.CrossRefPubMedGoogle Scholar
  15. Eaton-Rye J.J., Tripathy B.C., Sharkey T.D. (ed.): Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation. Advances in Photosynthesis and Respiration, vol. 34. Pp. 854. Springer, Dordrecht 2012.Google Scholar
  16. Emerson R., Lewis C.M.: The dependence of the quantum yield of Chlorella photosynthesis on wave length of light.–Am. J. Bot. 30: 165–178, 1943.CrossRefGoogle Scholar
  17. Emerson R., Chalmers R., Cederstrand C.: Some factors influencing the long-wave limit of photosynthesis.–P. Natl. Acad. Sci. USA 43: 133–143, 1957.CrossRefGoogle Scholar
  18. Fenton J.M., Pellin M.J., Kaufmann K., Govindjee: Primary photochemistry of the reaction center of Photosystem I.–FEBS Lett. 100: 1–4, 1979.CrossRefPubMedGoogle Scholar
  19. Gao F., Ogawa T., Ma W.: Effect of green light on the amount and activity of NDH-1–PSI supercomplex in Synechocystis sp. strain PCC 6803.–Photosynthetica 56: 316–321, 2018.Google Scholar
  20. Gómez-Lojero C., Leyya-Castillo L.E., Herrera-Salgado P. et al.: Leptolyngbya CCM 4, a cyanobacterium with far-red photoacclimation from Cuatro Ciénegas Basin, México.–Photosynthetica 56: 342–353, 2018.Google Scholar
  21. Govindjee, Rabinowitch E.: Two forms of chlorophyll a in vivo with distinct photochemical functions.–Science 132: 355–356, 1960.CrossRefPubMedGoogle Scholar
  22. Govindjee, Shevela D.: Adventures with cyanobacteria: A personal perspective.–Front. Plant Sci. 2: 28, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Govindjee, Yang L.: Structure of the red fluorescence band in chloroplasts.–J. Gen. Physiol. 49: 763–780, 1966.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Guskov A., Kern J., Gabdulkhakov A. et al.: Cyanobacterial photosystem II at 2.9? resolution: role of quinones, lipids, channels and chloride.–Nat. Struct. Mol. Biol. 16: 334–342, 2009.CrossRefPubMedGoogle Scholar
  25. Hartmann V., Ruff A., Schuhmann W. et al.: Analysis of Photosystem II electron transfer with natural PsbA-variants by redox polymer/protein biophotoelectrochemistry.–Photosynthetica 56: 229–235, 2018.Google Scholar
  26. Huang J.-Y., Hung N.-T., Lin K.-M. et al.: Regulating photoprotection improves photosynthetic growth and biomass production in QC-site mutant cells of the cyanobacterium Synechocystis sp. PCC 6803.–Photosynthetica 56: 192–199, 2018.Google Scholar
  27. Jursinic P., Govindjee: Thermoluminescence and temperature effects on delayed light emission (corrected for changes in quantum yield of fluorescence) in DCMU-treated algae.–Photochem. Photobiol. 15: 331–348, 1972.CrossRefPubMedGoogle Scholar
  28. Kaňa R.: Application of spectrally resolved fluorescence induction to study light-induced nonphotochemical quenching in algae.–Photosynthetica 56: 132–138, 2018.Google Scholar
  29. Khorobrykh A.A., Yanykin D.V., Klimov V.V.: Photooxidation and photoreduction of exogenous cyctochrome c by Photosystem II preparations after various treatments of the wateroxidizing complex.–Photosynthetica 56: 244–253, 2018.Google Scholar
  30. Khusnutdinova D., Flores M., Beiler A.M., Moore G.F.: Synthesis and characterization of a cobalt(II) tetrakis(3-fluorophenyl)porphyrin with a built-in 4-vinylphenyl surface attachment moiety.–Photosynthetica 56: 67–74, 2018.Google Scholar
  31. Kondo J., Noguchi T.: PsbP-induced protein conformational changes around Clions in the water oxidizing center of Photosystem II.–Photosynthetica 56: 178–184, 2018.Google Scholar
  32. Kotakis C., Akhtar P., Zsiros O. et al.: Increased thermal stability of photosystem II and the macro-organization of thylakoid membranes, induced by co-solutes, associated with changes in the lipid-phase behaviour of thylakoid membranes.–Photosynthetica 56: 254–264, 2018.Google Scholar
  33. Kothari S., Cavender-Bares J., Bitan K. et al.: Community-wide consequences of variation in photoprotective physiology among prairie plants.–Photosynthetica 56: 455–467, 2018.Google Scholar
  34. Kreslavski V.D., Shmarev A.N., Lyubimov V.Yu. et al.: Response of photosynthetic apparatus in Arabidopsis thaliana L. mutant deficient in phytochrome A and B to UV-B.–Photosynthetica 56: 418–426, 2018.Google Scholar
  35. Lamb J.J., Røkke G., Hohmann-Marriott M.F.: Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 K.–Photosynthetica 56: 105–124, 2018.Google Scholar
  36. Langley J., Morton J., Purchase R. et al.: The deep red state of Photosystem II in Cyanidioschyzon merolae.–Photosynthetica 56: 275–278, 2018.Google Scholar
  37. Larkum A.W.D., Ritchie R.J., Raven J.A.: Living off the Sun: chlorophylls, bacteriochlorophylls and rhodopsins.–Photosynthetica 56: 11–43, 2018.Google Scholar
  38. Li Y., Vella N., Chen M.: Characterization of isolated photosystem I from Halomicronema hongdechloris, a chlorophyll fproducing cyanobacterium.–Photosynthetica 56: 306–315, 2018.Google Scholar
  39. Lu Y.: RNA editing of plastid-encoded genes.–Photosynthetica 56: 48–61, 2018.Google Scholar
  40. Mamedov M.D., Nosikova E.S., Vitukhnovskaya L.A. et al.: Influence of the disaccharide trehalose on the oxidizing side of Photosystem II.–Photosynthetica 56: 236–243, 2018.Google Scholar
  41. Mathur S., Jain L., Jajoo A.: Photosynthetic efficiency in sun and shade plants.–Photosynthetica 56: 354–365, 2018.Google Scholar
  42. Mondal J., Bruce B.D.: Ferredoxin: the central hub connecting photosystem I to cellular metabolism.–Photosynthetica 56: 279–293, 2018.Google Scholar
  43. Nickelsen K.: On Otto Warburg, Nazi Bureaucracy and the difficulties of moral judgment.–Photosynthetica 56: 75–85, 2018.Google Scholar
  44. Nonomura A.M., Pedersen A., Brummel D.P. et al.: Brandt iH026a plant growth regulator.–Photosynthetica 56: 411–417, 2018.Google Scholar
  45. Ohnishi A., Wada H., Kobayashi K.: Improved photosynthesis in Arabidopsis roots by activation of GATA transcription factors.–Photosynthetica 56: 433–444, 2018.Google Scholar
  46. Papageorgiou G.C.: Contributions of Govindjee, 1955-1969.–In: Eaton-Rye J.J., Tripathy B.C., Sharkey T.D. (ed.): Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation. Advances in Photosynthesis and Respiration, vol. 34. Pp. 803–814. Springer, Dordrecht 2012.CrossRefGoogle Scholar
  47. Papageorgiou G.C., {ieGovindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis.–Advances in Photosynthesis and Respiration, vol. 19. Pp. 820. Springer, Dordrecht 2004.Google Scholar
  48. Polutchko S.K., Stewart J.J., Demmig-Adams B., Adams III W.W.: Evaluating the link between photosynthesis capacity and leaf vascular organization with principal component analysis.–Photosynthetica 56: 392–403, 2018.Google Scholar
  49. Prášil O., Kolber Z.S., Falkowski P.G.: Control of the maximal chlorophyll fluorescence yield by the QB binding site.–Photosynthetica 56: 150–162, 2018.Google Scholar
  50. Rabinowitch, E.: Robert Emerson 1903-1959. A Biographical Memoir. Pp. 112–131. National Academy of Sciences, Washington DC 1961.Google Scholar
  51. Shao S., Cardona T., Nixon P.J.: Early emergence of the FtsH protease involved in photosystem II repair.–Photosynthetica 56: 163–177, 2018.Google Scholar
  52. Shevela D., Eaton-Rye J.J., Shen J.-R., Govindjee: Photosystem II and the unique role of bicarbonate: A historical perspective.–Biochim. Biophys. Acta 1817: 1134–1151, 2012.CrossRefPubMedGoogle Scholar
  53. Shirke P.A., Pathre U.V., Sane P.V.: Adaptation strategies of two leaf cohorts of Prosopis juliflora produced in spring and monsoon.–Photosynthetica 56: 168–477, 2018.Google Scholar
  54. Sipka G., Kis M., Smart J.L., Maróti P.: Fluorescence induction of photosynthetic bacteria.–Photosynthetica 56: 125–131, 2018.Google Scholar
  55. Stemler A, Govindjee: Bicarbonate ion as a critical factor in photosynthetic oxygen evolution.–Plant Physiol. 52: 119–123, 1973.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses?–Photosynthetica 56: 86–104, 2018.Google Scholar
  57. Strašková A., Knoppová J., Komenda J.: Isolation of the cyanobacterial YFP-tagged photosystem I using GFP-Trap?.–Photosynthetica 56: 300–305, 2018.Google Scholar
  58. Stewart J.J., Adams III W.W., Cohu C.M., Demmig-Adams B.: Tocopherols modulate leaf vein arrangement and composition without impacting photosynthesis.–Photosynthetica 56: 382–391, 2018.Google Scholar
  59. Tikhonov K., Shevela D., Klimov V.V., Messinger J.: Quantification of bound bicarbonate in photosystem II.–Photosynthetica 56: 210–216, 2018.Google Scholar
  60. Uchiyama H., Ichinose M., Sugita M.: Chloroplast ribonucleoprotein-like proteins of the moss Physcomitrella patens are not involved in RNA stability and RNA editing.–Photosynthetica 56: 62–66, 2018.Google Scholar
  61. Vredenberg W.J.: On the quantitative relation between dark kinetics of NPQ-induced changes in variable fluorescence and the activation state of the CF0•CF1•ATPase in leaves.–Photosynthetica 56: 139–149, 2018.Google Scholar
  62. Wasielewski M.R., Johnson D.G., Seibert M., Govindjee: Determination of the primary charge separation rate in isolated photosystem II reaction centers with 500-fs resolution.–P. Natl. Acad. Sci. USA 86: 524–528, 1989.CrossRefGoogle Scholar
  63. Wasielewski M.R., Fenton J.M., Govindjee: The rate of formation of P700[+]–Ao [-] in Photosystem I particles from spinach as measured by picosecond transient absorption spectroscopy.–Photosynth. Res. 12: 181–190, 1987.CrossRefPubMedGoogle Scholar
  64. Wungrampha S., Joshi R., Singla-Pareek S.L., Pareek A.: Photosynthesis and salinity: are these mutually exclusive.–Photosynthetica 56: 366–381, 2018.Google Scholar
  65. Yamada M., Nagao R., Iwai M. et al.: The PsbQ? protein affects the redox potential of the QA in photosystem II.–Photosynthetica 56: 185–191, 2018.Google Scholar
  66. Yodsang P., Raksajit W., Aro E.-M. et al.: Factors affecting photobiological hydrogen production in five filamentous cyanobacteria from Thailand.–Photosynthetica 56: 334–341, 2018.Google Scholar
  67. Zakar T., Kovacs L., Vajravel S., Herman E., Kis M., Laczko-Dobos H., Gombos Z.: Determination of PS I oligomerisation in various cyanobacterial strains and mutants by non-invasive methods.–Photosynthetica 56: 294–299, 2018.Google Scholar
  68. Zeng L.-D., Li M., Chow W.S., Peng C.-L.: Susceptibility of an ascorbate-deficient mutant of Arabidopsis to high-light stress.–Photosynthetica 56: 427–432, 2018.Google Scholar
  69. Zhu H., Zhang T.-J., Zheng J. et al.: Anthocyanins function as a light attenuator to compensate for insufficient photoprotection mediated by nonphotochemical quenching in young leaves of Acmena acuminatissima in winter.–Photosynthetica 56: 445–454, 2018.Google Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • Julian J. Eaton-Rye
    • 1
  1. 1.Department of BiochemistryUniversity of OtagoDunedinNew Zealand

Personalised recommendations