, Volume 56, Issue 1, pp 455–467 | Cite as

Community-wide consequences of variation in photoprotective physiology among prairie plants

  • S. Kothari
  • J. Cavender-Bares
  • K. Bitan
  • A. S. Verhoeven
  • R. Wang
  • R. A. Montgomery
  • J. A. Gamon
Open Access


Photoprotective pigments, like those involved in the xanthophyll cycle, help plants avoid oxidative damage caused by excess radiation. This study aims to characterize a spectrum of strategies used to cope with light stress by a diverse group of prairie plants at Cedar Creek Ecosystem Science Reserve (East Bethel, MN). We find that concentrations of photosynthetic and photoprotective pigments are highly correlated with one another and with other physiological traits across species and over time, and tend to be phylogenetically conserved. During a period of water limitation, plots dominated by species with constitutively low pigment concentrations showed a greater decline in mean reflectance and photochemical reflectance index, a reflectance-based indicator of photoprotective physiology, possibly due to alterations in canopy structure. Our findings suggest two contrasting strategies for withstanding light stress: (1) Using photoprotective pigments to dissipate excess energy, and (2) altering canopy structure to minimize absorbance of excess radiation.

Additional key words

drought light-use efficiency phenology photoinhibition trait covariance water-use efficiency 



total chlorophyll (a + b) concentration


community-weighted mean


xanthophyll de-epoxidation state


electron transport rate


fraction of absorbed photosynthetically active radiation


maximal quantum yield of PSII photochemistry


light-use efficiency


maximum likelihood


normalized difference vegetation index


near-infrared light


nonphotochemical quenching


principal component


principal component analysis


photochemical reflectance index


xanthophyll pool size


visible light


intrinsic water-use efficiency


reflectance at wavelength n


effective quantum yield of PSII photochemistry

Supplementary material

11099_2018_777_MOESM1_ESM.pdf (394 kb)
Supplementary material, approximately 394 KB.
11099_2018_777_MOESM2_ESM.pdf (225 kb)
Supplementary material, approximately 225 KB.
11099_2018_777_MOESM3_ESM.pdf (214 kb)
Supplementary material, approximately 214 KB.
11099_2018_777_MOESM4_ESM.pdf (79 kb)
Supplementary material, approximately 78.9 KB.


  1. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview.–Photosynthetica 51: 163–190, 2013.CrossRefGoogle Scholar
  2. Barton C.V.M., North P.R.J.: Remote sensing of canopy light use efficiency using the photochemical reflectance index.–Remote Sens. Environ. 78: 264–273, 2001.CrossRefGoogle Scholar
  3. Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins.–Planta 170: 489–504, 1987.CrossRefPubMedGoogle Scholar
  4. Blomberg S.P., Garland T., Ives A.R.: Testing for phylogenetic signal in comparative data: behavioral traits are more labile.–Evolution 57: 717–745, 2003.CrossRefPubMedGoogle Scholar
  5. Cavender-Bares J., Bazzaz F.A.: From leaves to ecosystems: using chlorophyll fluorescence to assess photosynthesis and plant function in ecological studies.–In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 409–428. Springer, Dordrecht 2004.Google Scholar
  6. Cavender-Bares J., Gamon J. A., Hobbie S. E. et al.: Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales.–Am. J. Bot. 104: 966–969, 2017.CrossRefGoogle Scholar
  7. Cavender-Bares J., Meireles J.E., Couture J.J. et al.: Associations of leaf spectra with genetic and phylogenetic variation in oaks: prospects for remote detection of biodiversity.–Remote Sens. 8: 221, 2016.CrossRefGoogle Scholar
  8. Comstock J.P., Mahall B.E.: Drought and changes in leaf orientation for two California chaparral shrubs: Ceanothus megacarpus and Ceanothus crassifolius.–Oecologia 65: 531–535, 19CrossRefPubMedGoogle Scholar
  9. Demmig-Adams B., Adams W.W. III: The role of xanthophyll cycle carotenoids in the protection of photosynthesis.–Trends Plant Sci. 1: 21–26, 1996.CrossRefGoogle Scholar
  10. Donoghue M.J.: A phylogenetic perspective on the distribution of plant diversity.–P. Natl. Acad. Sci. USA 105: 11549–11555, 2008.Google Scholar
  11. Drummond A.J., Ho S.Y.W., Phillips M.J. et al.: Relaxed phylogenetics and dating with confidence.–PLoS Biol. 4: e88, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Edwards E.J., Osborne C.P., Strömberg C.A.E. et al.: The origins of C4 grasslands: Integrating evolutionary and ecosystem science.–Science 328: 587–591, 2010.CrossRefPubMedGoogle Scholar
  13. Fargione J., Tilman D.: Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass.–Oecologia 143: 598–606, 2005.CrossRefPubMedGoogle Scholar
  14. Gamon J.A., Berry J.A.: Facultative and constitutive pigment effects on the Photochemical Reflectance Index (PRI) in sun and shade conifer needles.–Israel J. Plant. Sci. 60: 85–95, 2012.CrossRefGoogle Scholar
  15. Gamon J.A., Kitajima K., Mulkey S.S. et al.: Diverse optical and photosynthetic properties in a neotropical dry forest during the dry season: implications for remote estimation of photosynthesis.–Biotropica 37: 547–560, 2005.CrossRefGoogle Scholar
  16. Gamon J.A., Pearcy R.W.: Leaf movement, stress avoidance and photosynthesis in Vitis californica.–Oecologia 79: 475–481, 19CrossRefPubMedGoogle Scholar
  17. Gamon J.A., Serrano L., Surfus J.S.: The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels.–Oecologia 112: 492–501, 1997.CrossRefPubMedGoogle Scholar
  18. Garbulsky M.F., Peñuelas J., Gamon J. et al.: The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and metaanalysis.–Remote Sens. Environ. 115: 281–297, 2011.CrossRefGoogle Scholar
  19. Ghannoum O.: C4 photosynthesis and water stress.–Ann. Bot.-London 103: 635–644, 2009.CrossRefGoogle Scholar
  20. Gitelson A.A., Gamon J.A.: The need for a common basis for defining light-use efficiency: Implications for productivity estimation.–Remote Sens. Environ. 156: 196–201, 2015.CrossRefGoogle Scholar
  21. Gitelson A.A., Gamon J.A., Solovchenko A.: Multiple drivers of seasonal change in PRI: Implications for photosynthesis 1. Leaf level.–Remote Sens. Environ. 191: 110–116, 2017a.CrossRefGoogle Scholar
  22. Gitelson A.A., Gamon J.A., Solovchenko A.: Multiple drivers of seasonal change in PRI: Implications for photosynthesis 2. Stand level.–Remote Sens. Environ. 190: 198–206, 2017b.CrossRefGoogle Scholar
  23. Giussani L.M., Gillespie L.J., Scataglini M.A. et al.: Breeding system diversification and evolution in American Poa supersect. Homalopoa (Poaceae: Poeae: Poinae).–Ann. Bot.-London 118: 281–303, 2016.CrossRefGoogle Scholar
  24. Harmon L.J., Weir J.T., Brock C.D. et al.: GEIGER: investigating evolutionary radiations.–Bioinformatics 24: 129–131, 2008.CrossRefPubMedGoogle Scholar
  25. Haxeltine A., Prentice I.C.: A general model for the light-use efficiency of primary production.–Funct. Ecol. 10: 551–561, 1996.CrossRefGoogle Scholar
  26. Jahns P., Holzwarth A.R.: The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II.–Biochim. Biophys. Acta 1817: 182–193, 2012.CrossRefPubMedGoogle Scholar
  27. Jetz W., Cavender-Bares J., Pavlick R. et al.: Monitoring plant functional diversity from space.–Nat. Plants 2: 16024, 2016.CrossRefPubMedGoogle Scholar
  28. Joel G., Gamon J.A., Field C.B.: Production efficiency in sunflower: The role of water and nitrogen stress.–Remote Sens. Environ. 62: 176–188, 1997.CrossRefGoogle Scholar
  29. Kadioglu A., Terzi R.: A dehydration avoidance mechanism: leaf rolling.–Bot. Rev. 73: 290–302, 2007.CrossRefGoogle Scholar
  30. Kennedy T.A., Naeem S., Howe K.M. et al.: Biodiversity as a barrier to ecological invasion.–Nature 417: 636–638, 2002.CrossRefPubMedGoogle Scholar
  31. Kim K.-J., Choi K.-S., Jansen R.K.: Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae).–Mol. Biol. Evol. 22: 1783–1792, 2005.CrossRefPubMedGoogle Scholar
  32. Lavin M., Herendeen P.S., Wojciechowski M.F.: Evolutionary rates analysis of leguminosae implicates a rapid diversification of lineages during the tertiary.–Syst. Biol. 54: 575–594, 2005.CrossRefPubMedGoogle Scholar
  33. Lee J., Durst R.W., Wrolstad R.E.: Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study.–J. AOAC Int. 88: 1269–1278, 2005.PubMedGoogle Scholar
  34. McManus K.M., Asner G.P., Martin R.E. et al.: Phylogenetic structure of foliar spectral traits in tropical forest canopies.–Remote Sens. 8: 196, 2016.CrossRefGoogle Scholar
  35. Miyazawa S.-I., Makino A., Terashima I.: Changes in mesophyll anatomy and sink–source relationships during leaf development in Quercus glauca, an evergreen tree showing delayed leaf greening.–Plant Cell Environ. 26: 745–755, 2003.CrossRefGoogle Scholar
  36. Montgomery R.A., Goldstein G., Givnish T.J.: Photoprotection of PSII in Hawaiian lobeliads from diverse light environments.–Funct. Plant Biol. 35: 595–605, 2008.CrossRefGoogle Scholar
  37. Müller P., Li X.-P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy.–Plant Physiol. 125: 1558–1566, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Murray J.R., Hackett W.P.: Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L.–Plant Physiol. 97: 343–351, 1991.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nar H., Saglam A., Terzi R. et al.: Leaf rolling and photosystem II efficiency in Ctenanthe setosa exposed to drought stress.–Photosynthetica 47: 429–436, 2009.CrossRefGoogle Scholar
  40. Ollinger S.V., Richardson A.D., Martin M.E. et al.: Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks.–P. Nat. Acad. Sci. USA 105: 19336–19341, 2008.CrossRefGoogle Scholar
  41. Paradis E., Claude J., Strimmer K.: APE: Analyses of Phylogenetics and Evolution in R language.–Bioinformatics 20: 289–290, 2004.CrossRefPubMedGoogle Scholar
  42. Pearcy R.W., Muraoka H., Valladares F.: Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model.–New Phytol. 166: 791–800, 2005.CrossRefPubMedGoogle Scholar
  43. Pearse W.D., Purvis A.: phyloGenerator: an automated phylogeny generation tool for ecologists.–Methods Ecol. Evol. 4: 692–698, 2013.CrossRefGoogle Scholar
  44. Peguero-Pina J.J., Morales F., Flexas J. et al.: Photochemistry, remotely sensed physiological reflectance index and deepoxidation state of the xanthophyll cycle in Quercus coccifera under intense drought.–Oecologia 156: 1–11, 2008.CrossRefPubMedGoogle Scholar
  45. Peñuelas J., Garbulsky M.F., Filella I.: Photochemical reflectance index (PRI) and remote sensing of plant CO2 uptake.–New Phytol. 191: 596–599, 2011.CrossRefPubMedGoogle Scholar
  46. R Core Team.: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2016. Scholar
  47. Ramírez-Valiente J.A., Koehler K., Cavender-Bares J.: Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes).–Tree Physiol. 35: 521–534, 2015.CrossRefPubMedGoogle Scholar
  48. Revell L.J.: phytools: an R package for phylogenetic comparative biology (and other things).–Methods Ecol. Evol. 3: 217–223, 2012.CrossRefGoogle Scholar
  49. Savage J.A., Cavender-Bares J., Verhoeven A.: Willow species (genus: Salix) with contrasting habitat affinities differ in their photoprotective responses to water stress.–Funct. Plant Biol. 36: 300–309, 2009.CrossRefGoogle Scholar
  50. Schneider C.A., Rasband W.S., Eliceiri K.W.: NIH Image to Image J: 25 years of image analysis.–Nat. Methods 9: 671–675, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Shen M., Chen J., Zhu X. et al.: Yellow flowers can decrease NDVI and EVI values: evidence from a field experiment in an alpine meadow.–Can. J. Remote Sens. 35: 99–106, 2009.CrossRefGoogle Scholar
  52. Sims D.A., Gamon J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages.–Remote Sens. Environ. 81: 337–354, 2002.CrossRefGoogle Scholar
  53. Soudani K., Hmimina G., Dufrêne E. et al.: Relationships between photochemical reflectance index and light-use efficiency in deciduous and evergreen broadleaf forests.–Remote Sens. Environ. 144: 73–84, 2014.CrossRefGoogle Scholar
  54. Springer K., Wang R., Gamon J.: Parallel seasonal patterns of photosynthesis, fluorescence, and reflectance indices in boreal trees.–Remote Sens. 9: 691, 2017.CrossRefGoogle Scholar
  55. Stamatakis A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.–Bioinformatics 22: 2688–2690, 2006.CrossRefPubMedGoogle Scholar
  56. Steyn W.J., Wand S.J.E., Holcroft D.M. et al.: Anthocyanins in vegetative tissues: a proposed unified function in photoprotection.–New Phytol. 155: 349–361, 2002.CrossRefGoogle Scholar
  57. Stylinski C., Gamon J., Oechel W.: Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species.–Oecologia 131: 366–374, 2002.CrossRefPubMedGoogle Scholar
  58. Taylor S.H., Ripley B.S., Martin T. et al.: Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought.–Glob. Change Biol. 20: 1992–2003, 2014.CrossRefGoogle Scholar
  59. Tilman D., Reich P.B., Knops J. et al.: Diversity and productivity in a long-term grassland experiment.–Science 294: 843–845, 2001.CrossRefPubMedGoogle Scholar
  60. Turgut R., Kadioglu A.: The effect of drought, temperature and irradiation on leaf rolling in Ctenanthe setosa.–Biol. Plantarum 41: 629–633, 19CrossRefGoogle Scholar
  61. Ustin S.L., Gamon J.A. Remote sensing of plant functional types.–New Phytol. 186: 795–816, 2010.CrossRefPubMedGoogle Scholar
  62. Valladares F., Pugnaire F.I.: Tradeoffs between irradiance capture and avoidance in semi-arid environments assessed with a crown architecture model.–Ann. Bot.-London 83: 459–469, 1999.CrossRefGoogle Scholar
  63. Wada M.: Chloroplast movement.–Plant Sci. 210: 177–182, 2013.CrossRefPubMedGoogle Scholar
  64. Wang R., Gamon J.A., Montgomery R.A. et al.: Seasonal variation in the NDVI–species richness relationship in a prairie grassland experiment (Cedar Creek).–Remote Sens. 8: 128, 2016.CrossRefGoogle Scholar
  65. Webb C.O., Donoghue M.J.: Phylomatic: tree assembly for applied phylogenetics.–Mol. Ecol. Notes 5: 181–183, 2005.CrossRefGoogle Scholar
  66. Wikström N., Savolainen V., Chase M.W.: Evolution of the angiosperms: calibrating the family tree.–P. Roy. Soc. Lond. B Bio. 268: 2211–2220, 2001.CrossRefGoogle Scholar
  67. Wong C.Y.S., Gamon J.A.: Three causes of variation in the photochemical reflectance index (PRI) in evergreen conifers.–New Phytol. 206: 187–195, 2015.CrossRefPubMedGoogle Scholar
  68. Wujeska A., Bossinger G., Tausz M.: Responses of foliar antioxidative and photoprotective defence systems of trees to drought: a meta-analysis.–Tree Physiol. 33: 1018–1029, 2013.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • S. Kothari
    • 1
  • J. Cavender-Bares
    • 1
    • 2
  • K. Bitan
    • 2
  • A. S. Verhoeven
    • 3
  • R. Wang
    • 4
  • R. A. Montgomery
    • 5
  • J. A. Gamon
    • 4
    • 6
    • 7
  1. 1.Plant Biological Sciences ProgramUniversity of MinnesotaSaint PaulUSA
  2. 2.Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSaint PaulUSA
  3. 3.Department of BiologyUniversity of St. ThomasSaint PaulUSA
  4. 4.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada
  5. 5.Department of Forest ResourcesUniversity of MinnesotaSt. PaulUSA
  6. 6.Center for Advanced Land Management Information Technologies, School of Natural ResourcesUniversity of Nebraska–LincolnLincolnUSA
  7. 7.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations