Photosynthetica

, Volume 56, Issue 1, pp 342–353 | Cite as

Leptolyngbya CCM 4, a cyanobacterium with far-red photoacclimation from Cuatro Ciénegas Basin, México

  • C. Gómez-Lojero
  • L. E. Leyva-Castillo
  • P. Herrera-Salgado
  • J. Barrera-Rojas
  • E. Ríos-Castro
  • E. B. Gutiérrez-Cirlos
Article
  • 81 Downloads

Abstract

A cyanobacterium containing phycobiliproteins with far-red acclimation was isolated from Pozas Rojas, Cuatro Ciénegas, México. It was named Leptolyngbya CCM 4 after phylogenetic analysis and a description of its morphological characteristics. Leptolyngbya was grown in far-red light. Sucrose-gradient analysis of the pigments revealed two different colored bands of phycobiliproteins. A band at 60% sucrose was a phycocyanin containing phycobilisome; at 35% sucrose, a new type of phycobiliprotein absorbed at 710 nm. SDS-PAGE revealed the presence of two types of core-membrane linkers. Analysis of the hydrophobic pigments extracted from the thylakoid membranes revealed Chl a, d, and f. The ratio of Chl f/a was reversibly changed from 1:12–16 under far-red light to an undetectable concentration of Chl f under white light. Cuatro Ciénegas, a place surrounded by the desert, is a new ecosystem where a cyanobacterium, which grows in farred light, was discovered.

Additional key words

chlorophyll f Cuatro Ciénegas Basin far-red light photosynthesis phycobilisomes 

Abbreviations

AP

allophycocyanin

Car

carboxisomes

CCA

complementary chromatic acclimation

CNE

clear native electrophoresis

FaRLiP

far-red light photoacclimation

FNR

ferredoxin-NADP+ reductase

Fr.

fractions

LCM

core membrane linker

PBP

phycobiliprotein

PBS

phycobilisome

PC

phycocyanin

PMSF

phenylmethylsulfonyl fluoride

REP

repetitive sequence

RL

red light

Th

thylakoid membranes

WCE

whole cell extract

WL

white light

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2018_774_MOESM1_ESM.pdf (245 kb)
Supplementary material, approximately 244 KB.
11099_2018_774_MOESM2_ESM.pdf (150 kb)
Supplementary material, approximately 149 KB.
11099_2018_774_MOESM3_ESM.pdf (197 kb)
Supplementary material, approximately 197 KB.
11099_2018_774_MOESM4_ESM.pdf (368 kb)
Supplementary material, approximately 368 KB.
11099_2018_774_MOESM5_ESM.pdf (487 kb)
Supplementary material, approximately 486 KB.

References

  1. Adir N.: Elucidation of the molecular structures of components of the phycobilisome: Reconstructing a giant.–Photosynth. Res. 85: 15–32, 2005.CrossRefPubMedGoogle Scholar
  2. Airs R.L., Temperton B., Sambles C. et al.: Chl f and Chl d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation.–FEBS Lett. 588: 3770–3777, 2014.CrossRefPubMedGoogle Scholar
  3. Akutsu S., Fujinuma D., Furukawa H. et al.: Pigment analysis of a Chl f-containing cyanobacterium strain KC1 isolated from Lake Biwa.–Photomed. Photobiol. 33: 35–40, 2011.Google Scholar
  4. Alcántara-Sánchez F., Leyva-Castillo L.E., Chagolla-López A. et al.: Distribution of isoforms of ferredoxin-NADP+ reductase (FNR) in cyanobacteria in two growth conditions.–Int. J. Biochem. Cell B. 85: 123–134, 2017.CrossRefGoogle Scholar
  5. Alcaraz L.D., Olmedo G., Bonilla G.: The genome of Bacillus cohauilensis reveals adaptations essential for survival in the relic of an ancient marine environment.–P. Natl. Acad. Sci. USA 105: 5803–5808, 2008.CrossRefGoogle Scholar
  6. Anderson L., Eiserling F.A.: Asymmetrical core structure in phycobilisomes of the cyanobacterium Synechocystis sp. PCC 6701.–J. Mol. Biol. 191: 441–451, 1986.CrossRefPubMedGoogle Scholar
  7. Behrendt L., Brejnrod A., Schliep M. et al.: Chl f-driven photosynthesis in a cavernous cyanobacterium.–ISME J. 9: 2108–2111, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bryant D.A., Guglielmi G., de Marsac N.T. et al.: The structure of the cyanobacterial phycobilisomes: a model.–Arch. Microbiol. 123: 113–127, 1979.CrossRefGoogle Scholar
  9. Cárabez-Trejo A., Sandoval F.: A mitochondrial inner membrane preparation that sediments at 100 g.–J. Cell Biol. 62: 877–881, 1974.CrossRefGoogle Scholar
  10. Castenholtz R.W., Rippka R., Herdman M., Wilmotte A.: Formgenus V. Leptolyngbya Anagnostidis and Komarek 1988.–In: Boone D.R., Castenholtz R.W. (ed.): Bergey’s Manual of Systematic Bacteriology, Vol. 1. Pp. 544–546. Springer-Verlag, New York 2001.Google Scholar
  11. Chang L., Liu X., Li Y. et al.: Structural organization of an intact phycobilisome and its association with photosystem II.–Cell Res. 25: 726–737, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen M., Schliep M., Willows R.D. et al: A red-shifted chlorophyl.–Science 329: 1318–1319, 2010.Google Scholar
  13. Chen M., Blankenship R.E.: Expanding the solar spectrum used by photosynthesis.–Trends Plant Sci 16: 427–431, 2011.CrossRefPubMedGoogle Scholar
  14. Chen M., Li Y., Birch D., Willows R.D.: A cyanobacterium that contains Chl far red absorbing photopigment.–FEBS Lett. 586: 3249–3254, 2012.CrossRefPubMedGoogle Scholar
  15. Chen M., Floetenmeyer M., Bibby T.S.: Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acariochloris marina.–FEBS Lett. 583: 2535–2539, 2009.CrossRefPubMedGoogle Scholar
  16. Chisholm S.W., Olson R.J., Zettler E.R. et al: A novel free living prochlorophyte abundant in the oceanic euphotic zone.–Nature 334: 340–343, 1988.CrossRefGoogle Scholar
  17. Couradeau E., Benzerara K., Moreira D. et al.: Prokaryotic and Eucaryotic communite structure in field and cultured microbialites from alkaline Lake Alchichica (Mexico).–PLoS ONE 6: e28767, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Curtis S.E., Haselkorn R.: Isolation and sequence of the gene for large subunit of ribulose-1,5-bisphosphate carboxylase from the cyanobacterium Anabaena 7120.–P. Natl. Acad. Sci. USA 80: 1835–1839, 1983.CrossRefGoogle Scholar
  19. Dong C., Tang A., Zhao J. et al.: ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp. PCC 7002.–Biochim. Biophys. Acta. 1787: 1122–1128, 2009.CrossRefPubMedGoogle Scholar
  20. Gan F., Bryant D.A.: Adaptive and acclimative responses of cyanobacteria to far-red light.–Environ. Microbiol. 17: 3450–3465, 2015.CrossRefPubMedGoogle Scholar
  21. Gan F., Shen G., Bryant D.A.: Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria.–Life 5: 4–24, 2014b.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gan F., Zhang S., Rockwell N.C. et al.: Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light.–Science 345: 1312–1317, 2014a.CrossRefPubMedGoogle Scholar
  23. Glazer A.N.: Phycobilisome a macromolecular complex optimized for light energy transfer.–BBA-Bioenergetics 768: 29–51, 1984.Google Scholar
  24. Glazer A.N.: Light guides.–J. Biol. Chem. 264: 1–4, 1989.PubMedGoogle Scholar
  25. Gómez-Lojero C., Pérez-Gómez B., Krogmann D.W. et al.: The tricylindrical core of the phycobilisome Arthrospira (Spirulina) maxima.–Int. J. Biochem. Cell. B. 29: 959–970, 19CrossRefGoogle Scholar
  26. Gómez-Lojero C., Pérez-Gómez B., Shen G. et al.: Interaction of ferredoxin:NADP+ oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium Synechococcus sp. Strain PCC 7002.–Biochemistry 42: 13800–13811, 2003.CrossRefPubMedGoogle Scholar
  27. Grossman A.R.: A molecular understanding of complementary chromatic adaptation.–Photosynth. Res. 76: 207–215, 2003.CrossRefPubMedGoogle Scholar
  28. Guglielmi G., Cohen-Bazire G., Bryant D.A.: The structure of Gloeobacter violaceus and its phycobilisome.–Arch. Microbiol. 129: 181–189, 1981.CrossRefGoogle Scholar
  29. Ho M.Y., Gan F., Shen G., Bryant D.A.: Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II. Characterization of phycobiliproteins produced during acclimation to far-red light.–Photosynth. Res. 131: 187–202, 2017.CrossRefPubMedGoogle Scholar
  30. Ho M.Y., Shen G., Canniffe D.P. et al.: Light-dependent Chl f synthase is a highly divergent paralog of PsbA of photosystem II.–Science 353: 886, 2016.CrossRefGoogle Scholar
  31. Houmard J., Capuano V., Colombano M.V. et al.: Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes.–P. Natl. Acad. Sci. USA 87: 2152–2156, 1990.CrossRefGoogle Scholar
  32. Hu Q., Marquardt J., Iwasaki I. et al.: Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic procaryote Acaryochloris marina.–Biochim Biophys Acta 1412: 250–261, 19CrossRefPubMedGoogle Scholar
  33. Itoh S., Ohno T., Noji T. et al.: Harvesting far-red light by chl f in photosystems I and II of unicellular cyanobacterium strain KC1.–Plant Cell Physiol. 56: 2024–2034, 2015.CrossRefPubMedGoogle Scholar
  34. Jordan P., Fromme P., Witt H.T. et al.: Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution.–Nature 411: 909–917, 2001.CrossRefPubMedGoogle Scholar
  35. Kehoe D.M., Gutu A.: Responding to color: the regulation of complementary chromatic adaptation.–Annu. Rev. Plant Biol. 57: 127–150, 2006.CrossRefPubMedGoogle Scholar
  36. Li Y., Scales N., Blakenship R.E. et al.: Extinction coefficient for red-shifted Chls: Chl d and Chl f.–BBA-Bioenergetics 1817: 1292–1298, 2012.CrossRefPubMedGoogle Scholar
  37. Li Y., Lin Y., Loughlin P.C., Chen M.: Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris a filamentous cyanobacterium containing Chl f.–Front. Plant Sci. 5: 67, 2014.PubMedPubMedCentralGoogle Scholar
  38. Li Y., Lin Y., Garvey C.J. et al.: Characterization of red-shifted phycobilisomes isolated from the Chl f–containing cyanobacterium Halomicronema hongdechloris.–Biochim. Biophys. Acta 1857: 107–114, 20CrossRefPubMedGoogle Scholar
  39. Liu H., Zhang H., Niedzwiedzki D.M. et al.: Phycobilisomes supply excitations to both photosystems in a megacomplexes in cyanobacteria.–Science 342: 1104–1107, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Loughlin P., Lin Y., Chen M.: Chlorophyl d and Acaryochloris marina: current status.–Photosynth. Res. 116: 277–293, 2013.CrossRefPubMedGoogle Scholar
  41. Lundell D.J., Yamanaka G., Glazer A.N.: A terminal energy acceptor of the phycobilisome: the 75,000-dalton polypeptide of Synechococcus 6301 phycobilisome a new biliprotein.–J. Cell Biol. 91: 315–319, 1981.CrossRefPubMedGoogle Scholar
  42. Mendoza-Hernández G., Pérez-Gómez B., Krogmann D.W. et al.: Interaction of linker proteins with the phycobiliproteins in the phycobilisome substructures of Gloeobacter violaceus.–Photosynth. Res. 106: 247–261, 20CrossRefPubMedGoogle Scholar
  43. Mielke S., Kiang N., Blankenship R. et al.: Efficiency of photosynthesis in a Chl d-utilizing oxygenic species.–Biochim. Biophys. Acta 1807: 1231–1236, 2011.CrossRefPubMedGoogle Scholar
  44. Mielke S.P. Kiang N.Y., Blankenship R.E., Mauzerall D.: Photosystem trap energies and spectrally-dependent energy storage efficiencies in the chl d-utilizing cyanobacterium, Acaryochloris marina.–BBA-Bioenergetics 1827: 255–265, 20CrossRefPubMedGoogle Scholar
  45. Mimuro M., Lipschultz C.A., Gantt E.: Energy flow in the phycobilisome core of Nostoc sp. (MAC): two independent terminal pigment.–BBA-Bioenergetics 852: 307–319, 1986.CrossRefGoogle Scholar
  46. Moore L.R., Goericke R., Chisholm S.W.: Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties.–Mar. Ecol. Prog. Ser. 116: 250–275, 1995.CrossRefGoogle Scholar
  47. Pérez-Gómez B., Mendoza-Hernández G., Cabellos-Avelar T. et al: A proteomic approach to the analysis of the components of the phycobilisomes from two cyanobacteria with complementary chromatic adaptation: Fremyella diplosiphon UTEX B590 and Tolypothrix PCC 7601.–Photosynth. Res. 114: 43–58, 2012.CrossRefPubMedGoogle Scholar
  48. Perkerson III R.B., Johansen J.R., Kovácik L. et al: A unique Pseudanabaenalean (cyanobacteria) genus Nodosilinean gen. nov. based on morphological and molecular data.–J. Phycol. 47: 1397–1412, 2011.CrossRefGoogle Scholar
  49. Reuter W., Wehrmeyer W.: Core structure in Mastigocladus laminosus phycobilisomes: II the central part of the tricylindrical core–APCM–contain the anchor polypeptide and no allophycocyanin B.–Arch. Microbiol. 153: 111–117, 1990.CrossRefGoogle Scholar
  50. Schägger H., von Jagow G.: Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa.–Anal. Biochem. 166: 368–379, 1987.CrossRefPubMedGoogle Scholar
  51. Sidler W.A. Phycobilisome a phycobiliprotein Structures.–In: Bryant D.A. (ed.): The Molecular Biology of Cyanobacteria. Pp. 139–216. Kluwer Academic Publishers, Dordrecht 1994.CrossRefGoogle Scholar
  52. Schluchter W.M., Bryant D.A.: Molecular characterization of ferredoxin NADP+ oxidoreductase in cyanobacteria: cloning and sequence of the petH gene of Synechococcus sp. PCC 7002 and studies in the gene product.–Biochemistry 31: 3092–3102, 1992.CrossRefPubMedGoogle Scholar
  53. Souza V., Eguiarte L.E., Siefert J., Elser J.: Microbial endemism: does phosphorus limitation enhance speciation?–Nat. Rev. Microbiol. 6: 559–564, 2008.CrossRefPubMedGoogle Scholar
  54. Souza V., Siefert J.L., Escalante A.E. et al.: The Cuatrociénegas Basin in Coahuila, México: An astrobiologial precambrian park.–Astrobiology 12: 641–647, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Stackebrandt E., Goebel B.M.: Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology.–Int. J. Syst. Bacteriol. 44: 846–849, 1994.CrossRefGoogle Scholar
  56. Stanier G. (Cohen-Bazire): Fine structure of cyanobacteria.–Methods Enzymol. 167: 157–172, 1988.CrossRefGoogle Scholar
  57. Stevens Jr S.E., Pat Patterson C.O., Myers J.: The production of hydrogen peroxide by blue-green algae: A survey.–J. Phycol. 9: 427–430, 1973.Google Scholar
  58. Tandeau de Marsac N., Houmard J.: Complementary chromatic adaptation: Physiological conditions and action spectra.–Methods Enzymol. 167: 318–328, 1988.CrossRefGoogle Scholar
  59. Taton A., Grubisic S., Brambilla E. et al.: Cyanobacterial diversity in natural and artificial microbial mat of Lake Fryxell (Mc Murdo Dry Valleys Antarctica): A morphological and molecular approach.–Appl. Environ. Microbiol. 69: 5157–5169, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Umena Y., Kawakami K., Shen J.R., Kamiya N.: Crystal structure of oxygen evolving photosystem II at a resolution of 1.2 A.–Nature 473: 55–60, 2011.CrossRefPubMedGoogle Scholar
  61. Wittig I., Karas M., Schägger H.: High resolution clear native electrophoresis for In-gel functional assays and fluorescence studies of membrane protein complexes.–Mol. Cell. Proteomics 6: 1215–1225, 2007.CrossRefPubMedGoogle Scholar
  62. Yamanaka G., Glazer A.N., Williams R.C.: Cyanobacterial phycobilisomes. Characterization of the phycobilisomes of Synechococcus sp. 6301.–J. Biol. Chem. 253: 8303–8310, 1978.PubMedGoogle Scholar
  63. Zhang Z., Schwartz S., Wagner L., Miller W.: A greedy algorithm for aligning DNA sequences.–J. Comput. Biol. 7: 203–214, 2000.CrossRefPubMedGoogle Scholar
  64. Zuker M.: Mfold web server for nucleic acid folding and hybridization prediction.–Nucleic Acids Res. 31: 3406–3415, 2003.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • C. Gómez-Lojero
    • 1
  • L. E. Leyva-Castillo
    • 1
  • P. Herrera-Salgado
    • 1
  • J. Barrera-Rojas
    • 1
  • E. Ríos-Castro
    • 2
  • E. B. Gutiérrez-Cirlos
    • 3
  1. 1.Departmento de BioquímicaCentro de Investigación y Estudios Avanzados del IPNCdMxMexico
  2. 2.Laboratorio Nacional de Servicios Experimentales Centro de Investigación y Estudios Avanzados del IPNTlanepantlaMexico
  3. 3.Unidad de BiomedicinaFES-Iztacala UNAMTlanepantlaMexico

Personalised recommendations