Photosynthetica

, Volume 56, Issue 1, pp 354–365 | Cite as

Photosynthetic efficiency in sun and shade plants

Review
  • 105 Downloads

Abstract

Photosynthesis is amongst the plant cell functions that are highly sensitive to any type of changes. Sun and shade conditions are prevalent in fields as well as dense forests. Dense forests face extreme sun and shade conditions, and plants adapt themselves accordingly. Sun flecks cause changes in plant metabolic processes. In the field, plants have to face high light intensity and survive under such conditions. Sun and shade type of plants develops a respective type of chloroplasts which help plants to survive and perform photosynthesis under adverse conditions. PSII and Rubisco behave differently under different sun and shade conditions. In this review, morphological, physiological, and biochemical changes under conditions of sun (high light) and shade (low light) on the process of photosynthesis, as well as the tolerance and adaptive mechanisms involved for the same, were summarized.

Additional key words

chlorophyll fluorescence high light low light photosynthesis shade sun 

Abbreviations

ABS

absorption

AOX

alternative oxidase

APX

ascorbate peroxidise

CAT

catalase

CET

cyclic electron flow

Chl

chlorophyll

CP

chloroplast protein

Cyt b/f

cytochrome b/f

DHA

dehydroascorbate

DHAR

dehydroascorbate reductase

ETR

electron rate

F0

minimal fluorescence

Fm

maximal fluorescence

FQR

ferredoxin-plastoquinone reductase

gs

stomatal conductance

HL

high light

LCP

light-compensation point

LL

low light

LSP

light-saturation point

LTR

long-term response

MDA

malondialdehyde

MDAR

monodehydroascorbate reductase

NPQ

nonphotochemical quenching

OJ, JI, IP

phases of Chl a fluorescence induction curve

PET

photosynthetic electron transport

pgr

proton gradient regulation mutant

pLHCII

phosphorylated LHCII

PN

net CO2 assimilation rates

POD

peroxidase

PQH2

plastoquinol

qP

proportion of open PSII reaction centers

RC

reaction center

ROS

reactive oxygen species

SS

soluble sugars

SOD

superoxide dismutase

VDE

violaxanthin de-epoxidase

VJ

variable fluorescence at 2 ms

φPo

maximum quantum yield of PSII photochemistry

ΨET2o

probability of electron transport from reduced QA to QB

ΨRE1o

probability of electron transport from the PSII to the PSI acceptor side

ZEP

zeaxanthin epoxidase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adir N., Zer H., Shochat S. et al.: Photoinhibition-a historical perspective.–Photosynth. Res. 76: 343–370, 2003.CrossRefPubMedGoogle Scholar
  2. Allahverdiyeva Y., Suorsa M., Tikkanen M. et al.: Photoprotection of photosystems in fluctuating light intensities.–J. Exp. Bot. 66: 2427–2436, 2014.CrossRefPubMedGoogle Scholar
  3. Allen J.F.: Botany. State transitions-a question of balance.–Science 299: 1530–1532, 2003.CrossRefPubMedGoogle Scholar
  4. Anderson J.M.: Photoregulation of the composition, function and structure of thylakoid membranes.–Ann. Rev. Plant Physio. 37: 93–136, 1986.CrossRefGoogle Scholar
  5. Anderson J.M., Aro E.M.: Grana stacking and protection of photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: An hypothesis.–Photosynth. Res. 41: 315–326, 1994.CrossRefPubMedGoogle Scholar
  6. Atanasova L., Stefanov D., Yordanov I. et al.: Comparative characteristics of growth and photosynthesis of sun and shade leaves from normal and pendulum walnut (Juglans regia L.) trees.–Photosynthetica 41: 289–292, 2003.CrossRefGoogle Scholar
  7. Bailey S., Walters R.G., Jansson S. et al.: Acclimation of Arabidopsis thaliana to light environment: the existence of separate low light and high light responses.–Planta 213: 794–801, 2001.CrossRefPubMedGoogle Scholar
  8. Bailey S., Horton P., Walters R.G.: Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition.–Planta 218: 793–802, 2004.CrossRefPubMedGoogle Scholar
  9. Bellafiore S., Barneche F., Peltier G. et al.: State transitions and light adaptation require chloroplast thylakoid protein kinase STN7.–Nature 433: 892–895, 2005.CrossRefPubMedGoogle Scholar
  10. Björkman O., Powles S.B.: Leaf movement in the shade species Oxalis oregana. I. Response to light level and light quality.–Carnegie I. Wash. 80: 59–62, 1981.Google Scholar
  11. Björkman O.: Responses to different quantum flux densities.–In: Lange O.L., Nobel P.S., Osmond C.B., Zeigler H. (ed.): Encyclopedia of Plant Physiology, New Series. Physiological Plant Ecology5. Pp. 47–107. Springer, Berlin–New York 1981.Google Scholar
  12. Boardman N.K.: Comparative photosynthesis of sun and shade plants.–Annu. Rev. Plant Physio. 28: 355–377, 1977.CrossRefGoogle Scholar
  13. Bonardi V., Pesaresi P., Becker T. et al.: Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases.–Nature 437: 1179–1182, 2005.CrossRefPubMedGoogle Scholar
  14. Bräutigam K., Dietzel L., Kleine T. et al.: Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis.–Plant Cell 21: 2715–2732, 20CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brestic M., Cornic G., Fryer M. et al.: Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress?–Planta 196: 450–457, 1995.CrossRefGoogle Scholar
  16. Brugnoli E., Björkman O.: Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation.–Photosynth. Res. 32: 23–35, 1992.CrossRefPubMedGoogle Scholar
  17. Casal J.J.: Photoreceptor signaling networks in plant responses to shade.–Plant Biol. 64: 403–427, 2013.CrossRefGoogle Scholar
  18. Chow W.S., Anderson J.M.: Photosynthetic responses of Pisum sativum to an increase in irradiance during growth. II. Thylakoid membrane components.–Aust. J. Plant Physiol. 14: 9–19, 1987.CrossRefGoogle Scholar
  19. Cuzzuol G.R.F., Milanez C.R.D.: Morphological and physiological adjustments in juvenile tropical trees under contrasting sunlight irradiance.–In: Najafpour M.M. (ed.): Advances in Photosynthesis. Fundamental Aspects. Pp. 501–518. In Tech Croatia, Rijeka 2012.Google Scholar
  20. DalCorso G., Pesaresi P., Masiero S. et al: A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis.–Cell 132: 273–285, 2008.CrossRefPubMedGoogle Scholar
  21. Demmig-Adams B., Adams W.W. III: Carotenoid composition in sun and shade leaves of plants with different life forms.–Plant Cell Environ. 15: 411–419, 1992.CrossRefGoogle Scholar
  22. Demmig-Adams B., Moeller D.L., Logan B.A. et al.: Positive correlation between levels of retained zeaxanthin+ anthrexanthin and degree of photoinhibition in shade leaves of Schefflera arboricola.–Planta 205: 367–374, 19CrossRefGoogle Scholar
  23. Deng Y.M., Chen S.M., Chen F.D. et al.: The embryo rescue derived intergeneric hybrid between Chrysanthemum and Ajania przewalskii shows enhanced cold tolerance.–Plant Cell Rep. 30: 2177–2186, 2011.CrossRefPubMedGoogle Scholar
  24. Dietzel L., Bräutigam K., Pfannschmidt T.: Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry-functional relationships between short-term and long-term light quality acclimation in plants.–FEBS J. 275: 1080–1088, 2008.CrossRefPubMedGoogle Scholar
  25. Dong C.J., Wang X.L., Shang Q.M.: Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings.–Sci. Hortic.-Amsterdam 129: 629–636, 2011.CrossRefGoogle Scholar
  26. Farquhar G.D., Sharkey T.D.: Stomatal conductance and photosynthesis.–Annu. Rev. Plant Physiol. 33: 317–345, 1982.CrossRefGoogle Scholar
  27. Foyer C.H., Noctor G.: Oxygen processing in photosynthesis: regulation and signaling.–New Phytol. 146: 359–388, 2000.CrossRefGoogle Scholar
  28. Ganeteg U., Külheim C., Andersson J. et al.: Is each light harvesting complex protein important for plant fitness?–Plant Physiol. 134: 502–509, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gonçalves J.F.D.C., Marenco R.A., Vieira G.: Concentration of photosynthetic pigments and chlorophyll fluorescence of mahogany and tonka bean under two light environments.–R. Bras. Fisiol. Veg. 13: 149–157, 2001.CrossRefGoogle Scholar
  30. Grieco M., Tikkanen M., Paakkarinen V. et al.: Steady-state phosphorylation of light-harvesting complex II proteins preserves photosystem I under fluctuating white light.–Plant Physiol. 160: 1896–1910, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Guo H.X., Liu W.Q., Shi Y.C.: Effects of different nitrogen forms on photosynthetic rate and the chlorophyll fluorescence induction kinetics of flue-cured tobacco.–Photosynthetica 44: 140–142, 2006.CrossRefGoogle Scholar
  32. Hertle A.P., Blunder T., Wunder T. et al.: PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow.–Mol. Cell 49: 511–523, 2013.CrossRefPubMedGoogle Scholar
  33. Hirth M., Dietzel L., Steiner S. et al.: Photosynthetic acclimation responses of maize seedlings grown under artificial laboratory light gradients mimicking natural canopy conditions.–Front. Plant Sci. 4: 1–12, 2013.CrossRefGoogle Scholar
  34. Hogewoning S.W., Wientjes E., Douwstra P.: Photosynthetic quantum yield dynamics: from photosystems to leaves.–Plant Cell 24: 1921–1935, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jia H., Liggins J.R., Chow W.S.: Acclimation of leaves to low light produces large grana: the origin of the predominant attractive force at work.–Phil.T. Roy. Soc. B 367: 3494–3502, 2012.CrossRefGoogle Scholar
  36. Jiang C.D., Wang X., Gao H.Y. et al.: Systemic regulation of leaf anatomical structure, photosynthetic performance, and highlight tolerance in sorghum.–Plant Physiol. 155: 1416–1424, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Joliot P., Johnson G.N.: Regulation of cyclic and linear electron flow in higher plants.–P. Natl. Acad. Sci. USA 108: 13317–13322, 2011.CrossRefGoogle Scholar
  38. Kalaji H.M., Jajoo A., Oukarroum A.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions.–Acta Physiol Plant. 38: 102, 2016.CrossRefGoogle Scholar
  39. Kobza J., Seemann J.R.: Mechanisms for light-dependent regulation of ribulose-1,5-bisphosphate carboxylase activity and photosynthesis in intact leaves.–P. Natl. Acad. Sci. USA 85: 3815–3819, 1988.CrossRefGoogle Scholar
  40. Kono M., Noguchi K., Terashima I.: Roles of the cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana.–Plant Cell Physiol. 55: 990–1004, 20CrossRefPubMedGoogle Scholar
  41. Kouřil R., Wientjes E., Bultema J.B. et al.: High-light vs. lowlight: Effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana.–Biochim. Biophys. Acta 1827: 411–419, 20CrossRefPubMedGoogle Scholar
  42. Kromdijk J., Głowacka K., Leonelli L. et al.: Improving photosynthesis and crop productivity by accelerating recovery from photoprotection.–Science 354: 857–861, 2016.CrossRefPubMedGoogle Scholar
  43. Kurepin L.V., Pharis R.P.: Light signaling and the phytohormonal regulation of shoot growth.–Plant Sci. 229: 280–289, 2014.CrossRefPubMedGoogle Scholar
  44. Kyle D.J., Ohad I., Arntzen C.J.: Membrane protein damage and repair. I. Selective loss of quione protein function in chloroplast membranes.–P. Natl. Acad. Sci. USA 81: 4070–4074, 1984.CrossRefGoogle Scholar
  45. Leong T.Y., Anderson J.M.: Adaptation of the thylakoid membranes of pea chloroplasts to light intensities I. Study on the distribution of chlorophyll-protein complexes.–Photosynth. Res. 5: 105–115, 1984a.CrossRefPubMedGoogle Scholar
  46. Leong T.Y., Anderson J.M.: Adaptation of the thylakoid membranes of pea chloroplasts to light intensities II. Regulation of electron transport capacities, electron carriers, coupling factor (CF1) activity and rates of photosynthesis.–Photosynth. Res. 5: 117–128, 1984b.CrossRefPubMedGoogle Scholar
  47. Leong T.Y., Anderson J.M.: Light-quality and irradiance adaptation of the composition and function of pea thylakoid membranes.–BBA-Bioenergetics 850: 57–63, 1986.CrossRefGoogle Scholar
  48. Li Q., Deng M., Xiong Y. et al.: Morphological and photosynthetic response to high and low irradiance of Aeschynanthus longicaulis.–Sci. World J. 2014: 347461, 20Google Scholar
  49. Li T., Liu L.N., Jiang C.D. et al.: Effects of mutual shading on the regulation of photosynthesis in field grown sorghum.–J. Photoch. Photobio. B 137: 31–38, 2014.CrossRefGoogle Scholar
  50. Lichtenthaler H.K., Buschmann C., Döll M. et al.: Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves.–Photosynth. Res. 2: 115–141, 1981.CrossRefPubMedGoogle Scholar
  51. Lichtenthaler H.K., Meier D., Buschmann C.: Development of chloroplasts at high and low light quanta fluence rates.–Israel J. Bot. 33: 185–194, 1984.Google Scholar
  52. Lunde C., Jensen P.E., Haldrup A. et al.: The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis.–Nature 408: 613–615, 2000.CrossRefPubMedGoogle Scholar
  53. Marchiori P.E.R., Machado E.C., Ribeiro R.V.: Photosynthetic limitations imposed by self-shading in field-grown sugarcane varieties.–Field Crop. Res. 155: 30–37, 2014.CrossRefGoogle Scholar
  54. Martins S.C.V., Detmann K.C., Reis J.V.D. et al.: Photosynthetic induction and activity of enzymes related to carbon metabolism: insights into the varying net photosynthesis rates of coffee sun and shade leaves.–Theor. Exp. Plant Physiol. 25: 62–69, 2013.CrossRefGoogle Scholar
  55. Martins S.C.V., Galmés J., Cavatte P.C. et al.: Understanding the low photosynthetic rates of sun and shade coffee leaves: bridging the gap on the relative roles of hydraulic, diffusive and biochemical constraints to photosynthesis.–PLoS ONE 9: e95571, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Maxwell K., Johnson G.N.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.Google Scholar
  57. Meier D., Lichtenthaler H.K.: Ultrastructural development of chloroplasts in radish seedlings grown at high and low light conditions and in the presence of the herbicide bentazon.–Protoplasma 107: 195–207, 1981.CrossRefGoogle Scholar
  58. Melis A.: Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo?–Trends Plant Sci. 4: 130–135, 1999.CrossRefPubMedGoogle Scholar
  59. Mishra Y., Jänkänpää J.H., Kiss A.Z. et al.: Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components.–BMC Plant Biol. 12: 6, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy.–Plant Physiol. 125: 1558–1566, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Munekage Y., Hojo M., Meurer J. et al.: PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis.–Cell 110: 361–371, 20CrossRefPubMedGoogle Scholar
  62. Munekage Y., Hashimoto M., Miyake C. et al.: Cyclic electron flow around photosystem I is essential for photosynthesis.–Nature 429: 579–582, 2004.CrossRefPubMedGoogle Scholar
  63. Muraoka H., Tang Y.H., Terashima I. et al.: Contribution of diffusional limitation, photo inhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light.–Plant Cell Environ. 23: 235–250, 2000.CrossRefGoogle Scholar
  64. Nandha B., Finazzi G., Joliot P. et al.: The role of PGR5 in the redox poising of photosynthetic electron transport.–Biochim. Biophys. Acta 1767: 1252–1259, 2007.CrossRefPubMedGoogle Scholar
  65. Niinemets U.: Photosynthesis and resource distribution through plant canopies.–Plant Cell Environ. 30: 1052–1071, 2007.CrossRefPubMedGoogle Scholar
  66. Nishiyama Y., Yamamoto H., Allakhverdiev S.I. et al.: Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery.–EMBO J. 20: 5587–5594, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ojanguren C.T., Goulden M.L.: Photosynthetic acclimation within individual Typha latifolia leaf segments.–Aquat. Bot. 111: 54–61, 2013.CrossRefGoogle Scholar
  68. Oquist G., Chow W.S., Anderson J.M.: Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosynthesis.–Planta 186: 450–460, 1992.CrossRefPubMedGoogle Scholar
  69. Osmond C.B.: What is photoinhibition? Some insights from comparisons of shade and sun plants.–In: Baker N.R., Bowyer J.R. (ed.): Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field. Pp. 1–24. BIOS Sci. Publ. Ltd, Oxford, UK 1994.Google Scholar
  70. Park Y.I., Chow W.S., Anderson J.M. et al.: Differential susceptibility of photosystem II to light stress in lightacclimated pea leaves depends on the capacity for photochemical and non-radiative dissipation of light.–Plant Sci. 115: 137–149, 1996.CrossRefGoogle Scholar
  71. Pearcy R.W., Sims D.A.: Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant.–In: Caldwell M.M., Pearcy R.W. (ed.): Exploitation of Environmental Heterogeneity by Plants. Pp. 145–174. Academic Press, San Diego 1994.CrossRefGoogle Scholar
  72. Pesaresi P., Hertle A., Pribil M. et al.: Optimizing photosynthesis under fluctuating light. The role of the Arabidopsis STN7 kinase.–Plant Signal. Behav. 5: 21–25, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Pfannschmidt T.: Chloroplast redox signals: how photosynthesis controls its own genes.–Trends Plant Sci. 8: 33–41, 2003.CrossRefPubMedGoogle Scholar
  74. Powles S.B.: Photoinhibition of photosynthesis induced by visible light.–Annu. Rev. Plant Physio. 35: 15–44, 1984.CrossRefGoogle Scholar
  75. Rintamäki E., Martinsuo P., Pursiheimo S. et al.: Cooperative regulation of light-harvesting complex II phosphorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts.–P. Natl. Acad. Sci. USA 97: 11644–11649, 2000.CrossRefGoogle Scholar
  76. Robinson S., Lovelock C.E., Osmond C.B.: Wax as a mechanism for protection against photoinhibition–A study of Cotyledon orbiculata.–Plant Biol. 106: 307–312, 19Google Scholar
  77. Rochaix J.D.: Role of thylakoid protein kinases in photosynthetic acclimation.–FEBS Lett. 581: 2768–2775, 2007.CrossRefPubMedGoogle Scholar
  78. Sarijeva G., Knapp M., Lichtenthaler H.K.: Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus.–J. Plant Physiol. 164: 950–955, 2007.CrossRefPubMedGoogle Scholar
  79. Schulze E.D., Lange O.L., Kappen L. et al.: The role of air humidity and leaf temperature in regulating stomatal resistance of Prunus armeniaca L. under desert conditions. II. The significance of leaf water status and internal carbondioxide concentration.–Oecologia 18: 219–233, 1975.CrossRefGoogle Scholar
  80. Šetlík I., Allakhverdiev S.I., Nedbal L. et al.: Three types of photosystem II photoinactivation. I. Damaging processes on the acceptor side.–Photosynth. Res. 23: 39–48, 1990.CrossRefPubMedGoogle Scholar
  81. Shao Q., Wang H., Guo H. et al.: Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii.–PLoS ONE 9: e85996, 20CrossRefPubMedPubMedCentralGoogle Scholar
  82. Smirnoff N.: Ascorbate biosynthesis and function in photoprotection.–Philos. T. R. Soc. Lond. B 355: 1455–1464, 2000.CrossRefGoogle Scholar
  83. Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient.–J. Photoch. Photobio. B 104: 236–257, 2011.CrossRefGoogle Scholar
  84. Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria.–Photochem. Photobiol. 61: 32–42, 1995.CrossRefGoogle Scholar
  85. Sugimoto K., Okegawa Y., Tohri A. et al: A single amino acid alteration in PGR5 confers resistance to antimycin A in cyclic electron transport around PSI.–Plant Cell Physiol. 54: 1525–1534, 2013.CrossRefPubMedGoogle Scholar
  86. Suorsa M., Järvi S., Grieco M. et al: PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions.–Plant Cell 24: 2934–2948, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Terashima I.: Anatomy of non-uniform leaf photosynthesis.–Photosynth. Res. 31: 195–212, 1992.CrossRefPubMedGoogle Scholar
  88. Tezara W., Martínez D., Rengifo E. et al.: Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray.–Ann. Bot.-London 92: 757–765, 2003.CrossRefGoogle Scholar
  89. Thayer S.S., Björkman O.: Leaf xanthophyll content and composition in sun and shade determined by HPLC.–Photosynth. Res. 23: 331–343, 1990.CrossRefPubMedGoogle Scholar
  90. Tikkanen M., Piippo M., Suorsa M. et al.: State transitions revisited: a buffering system for dynamic low light acclimation of Arabidopsis.–Plant Mol. Biol. 62: 779–793, 20CrossRefPubMedGoogle Scholar
  91. Tikkanen M., Grieco M., Kangasjärvi S. et al.: Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light.–Plant Physiol. 152: 723–735, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Timperio A.M., Gevi F., Ceci L.R. et al.: Acclimation to intense light implies changes at the level of trimeric subunits involved in the structural organization of the main light-harvesting complex of photosystem II (LHCII) and their isoforms.–Plant Physiol. Bioch. 50: 8–14, 2012.CrossRefGoogle Scholar
  93. Vass I.: Molecular mechanisms of photodamage in the Photosystem II complex.–Biochim. Biophys. Acta 1817: 209–217, 2012.CrossRefPubMedGoogle Scholar
  94. Valladares F., Niinemets U.: Shade tolerance, a key plant feature of complex nature and consequence.–Ann. Rev. Ecol. Evol. Syst. 39: 237–257, 2008.CrossRefGoogle Scholar
  95. Vogelmann T.C., Martin G.: The functional-significance of palisade tissue-penetration of directional versus diffuse light.–Plant Cell Environ. 16: 65–72, 1993.CrossRefGoogle Scholar
  96. Walters R.G.: Towards an understanding of photosynthesis acclimation.–J. Exp. Bot. 56: 435–447, 2005.CrossRefPubMedGoogle Scholar
  97. Way D.A., Pearcy R.W.: Sunflecks in trees and forests: from photosynthetic physiology to global change biology.–Tree Physiol. 32: 1066–1081, 2012.CrossRefPubMedGoogle Scholar
  98. Wollman F.A.: State transitions reveal the dynamics and flexibility of the photosynthetic apparatus.–EMBO J. 20: 3623–30, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Yamori W., Makino A., Shikanai T.: A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice.–Nat. Sci. Rep. 6: 20147, 2016.CrossRefGoogle Scholar
  100. Zivcak M., Brestic M., Kalaji H.M. et al.: Photosynthetic responses of sun-and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light?–Photosynth. Res. 119: 339–354, 2014.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.School of Life ScienceDevi Ahilya UniversityIndoreIndia

Personalised recommendations