Advertisement

Photosynthetica

, Volume 56, Issue 3, pp 851–860 | Cite as

Long-term acclimation of barley photosynthetic apparatus to narrow-band red and blue light

  • G. V. Kochetova
  • O. B. Belyaeva
  • D. S. Gorshkova
  • T. A. Vlasova
  • E. M. Bassarskaya
  • T. V. Zhigalova
  • O. V. Avercheva
Article

Abstract

Chloroplasts of barley plants grown under red light (RL, 660 nm) dramatically differed from the chloroplasts of plants raised under blue light (BL, 450 nm) or control plants (white light). The chloroplasts under RL had an extensive membrane system with high stacking degree and disordered irregular shaped stacks (shaggy-formed grana). After 5 h in darkness, dynamic rearrangements of chloroplast architecture in RL- and especially BL-grown plants were restricted compared with control plants. The light spectral quality affected the content and proportions of photosynthetic pigments. The leaves of RL-grown plants had the increased ratio of low-temperature fluorescence bands, F741/F683, corresponding to emission of PSI and PSII, respectively. This increase can be related to specific architecture of chloroplasts in RL-treated plants, providing close spacing between the two photosystems, which enhances energy transfer from PSII to PSI and facilitates the movement of LHCII toward PSI.

Additional key words

LED electron microscopy spectrofluorimetry spillover 

Abbreviations

BL

blue light

Car

carotenoids

Chl

chlorophyll

LEDs

light-emitting diodes

RL

red light

PSA

photosynthetic apparatus

WL

white light

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2017_736_MOESM1_ESM.pdf (390 kb)
Supplementary material, approximately 390 KB.
11099_2017_736_MOESM2_ESM.pdf (192 kb)
Supplementary material, approximately 191 KB.
11099_2017_736_MOESM3_ESM.pdf (136 kb)
Supplementary material, approximately 135 KB.

References

  1. Albertsson P.: A quantitative model of the domain structure of the photosynthetic membrane. — Trends Plant Sci. 6: 349–354, 2001.CrossRefPubMedGoogle Scholar
  2. Allen J.F.: How does protein phosphorylation regulate photosynthesis? — Trends Biochem. Sci. 17: 12–17, 1992.CrossRefPubMedGoogle Scholar
  3. Allen J.F., Forsberg J.: Molecular recognition in thylakoid structure and function. — Trends Plant Sci. 6: 317–326, 2001.CrossRefPubMedGoogle Scholar
  4. Anderson J.M., Andersson B.: The dynamic photosynthetic membrane and regulation of solar energy conversion. — Trends Biochem. Sci. 13: 351–355, 1988.CrossRefPubMedGoogle Scholar
  5. Anderson J.M., Chow W.S., Goodchild D.J.: Thylakoid membrane organisation in sun/shade acclimation. — Aust. J. Plant Physiol. 15: 11–26, 1988.CrossRefGoogle Scholar
  6. Arnon D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Beator J., Pötter E., Kloppstech K.: The effect of heat shock on morphogenesis in barley. — Plant Physiol. 100: 1780–1786, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Belgio E., Ungerer P., Ruban A.V.: Light-harvesting superstructures of green plant chloroplasts lacking photosystems. — Plant Cell Environ. 38: 2035–2047, 2015.CrossRefPubMedGoogle Scholar
  9. Bennett J.: Biosynthesis of the light-harvesting chlorophyll a/b protein. Polypeptide turnover in darkness. — Cur. J. Biochem. 118: 61–70, 1981.Google Scholar
  10. Benson S.L., Maheswaran P., Ware M.A. et al.: An intact light harvesting complex I antenna system is required for complete state transitions in Arabidopsis. — Nat. Plants 176: 1–9, 2015.Google Scholar
  11. Bonaventura C., Myers J.: Fluorescence and oxygen evolution from Chlorella pyrenoidosa. — Biochim. Biophys. Acta 189: 366–383, 1969.CrossRefPubMedGoogle Scholar
  12. Butler W.L.: Chlorophyll fluorescence: A probe for electron transfer and energy transfer.–In: Trebst A., Avron M. (ed.): Encyclopedia of Plant Physiology. New Series. 5. Pp. 149–167. Springer, Heidelberg 1977.Google Scholar
  13. Chekunova E.M., Savelieva N.V.: [LTS3 gene controls lightindependent chlorophyll biosynthesis in green algae Chlamydomonas reinhardtii.]–Ekol. Gen. 8: 35–44, 2010. [In Russian]Google Scholar
  14. Chow W.S., Melis A., Anderson J.M.: Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. — P. Natl. Acad. Sci. USA 87: 7502–7506, 1990.CrossRefGoogle Scholar
  15. Chuartzman S.G., Nevo R., Shimoni E. et al.: Thylakoid membrane remodeling during state transitions in Arabidopsis. — Plant Cell 20: 1029–1039, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Deng X.W., Tonkyn J.C., Peter G.F. et al.: Post-transcriptional control of plastid mRNA accumulation during adaptation of chloroplasts to different light quality environments. — Plant Cell 1: 645–654, 1989.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Danielsson R., Albertsson P.-A., Mamedov F. et al.: Quantification of photosystem I and II in different parts of the thylakoid membrane from spinach. — Biochim. Biophys. Acta 1608: 53–61, 2004.CrossRefPubMedGoogle Scholar
  18. Dekker, J.P., Boekema E.J.: Supramolecular organization of thylakoid membrane proteins in green plants. — Biochim. Biophys. Acta 1706: 12–39, 2005.CrossRefPubMedGoogle Scholar
  19. Dietzel L., Bräutigam K., Steiner S. et al.: Photosystem II supercomplex remodeling serves as an entry mechanism for state transitions in Arabidopsis. — Plant Cell 23: 2964–2977, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Eskins K., Westhoff P., Beremand P.D.: Light quality and irradiance level interaction in the control of expression of lightharvesting complex of photosystem II. Pigments, pigmentproteins, and mRNA accumulation. — Plant Physiol. 91: 163–169, 1989.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Galka P., Santabarbara S., Khuong T.T.H. et al.: Functional analyses of the plant photosystem I–light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to photosystem II is a very efficient antenna for photosystem I in state II. — Plant Cell 24: 2963–2978, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hogewoning S.W., Wientjes E., Douwstra P. et al.: Photosynthetic quantum yield dynamics: from photosystems to leaves. — Plant Cell 24: 1921–1935, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Iwai M., Takizawa K., Tokutsu R. et al.: Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. — Nature 464: 1210–1213, 2010.CrossRefPubMedGoogle Scholar
  24. Kouřil R., Wientjes E., Bultema J. B. et al.: High-light vs. lowlight: Effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. — BBABioenergetics 1827: 411–419, 2013.Google Scholar
  25. Kouřil R., Zygadlo A., Arteni A.A. et al.: Structural characterization of a complex of photosystem I and lightharvesting complex II of Arabidopsis thaliana. — Biochemistry 44: 10935–10940, 2005.CrossRefPubMedGoogle Scholar
  26. Krause G. H., Weis E.: Chlorophyll fluorescence and photosynthesis: The Basics. — Annu. Rev. Plant Phys. 42: 313–349, 1991.CrossRefGoogle Scholar
  27. Ladygin V. G., Semenova G. A.: The involvement of the complexes of photosystems in the organization of chloroplast ultrastructure in pea mutants. — Rus. J. Plant Physl+ 52: 596–605, 2005.CrossRefGoogle Scholar
  28. Laisk A., Oja V., Eichelmann H. et al.: Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1. — Biochim. Biophys. Acta 1837: 315–325, 2014.CrossRefPubMedGoogle Scholar
  29. Leong T.-Y., Anderson J.M.: Effects of light quality on the composition and function of thylakoid membranes in Atriplex triangularis. — BBA-Bioenergetics 766: 533–541, 1984.CrossRefGoogle Scholar
  30. Legocka J., Sobieszczuk-Nowicka E., Wojtyla Ł. et al.: Leadstress induced changes in the content of free, thylakoid-and chromatin-bound polyamines, photosynthetic parameters and ultrastructure in greening barley leaves. — J. Plant Physiol. 186–187: 15–24, 2015.CrossRefPubMedGoogle Scholar
  31. Lichtenthaler H.K.: Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. — Methods Enzymol. 148: 350–382, 1987.CrossRefGoogle Scholar
  32. Lichtenthaler H.K., Burkart S.: Photosynthesis and high light stress. — Bulg. J. Plant Physiol. 25: 3–16, 1999.Google Scholar
  33. Liere K., Weihe A, Börner T.: The transcription machineries of plant mitochondria and chloroplasts: Composition, function, and regulation. — J. Plant Physiol. 168: 1345–1360, 2011.CrossRefPubMedGoogle Scholar
  34. Liu X.Y., Guo S.R., Xu Z.G. et al.: Regulation of chloroplast ultrastructure, cross-section anatomy of leaves, and morphology of stomata of cherry tomato by different light irradiations of light-emitting diodes. — HortScience 46: 217–221, 2011.Google Scholar
  35. Liu X., Guo S., Chang T. et al.: Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). — Afr. J. Biotechnol. 11: 6169–6177, 2012.Google Scholar
  36. Melis A.: Light regulation of photosynthetic membrane structure, organization, and function. — J. Cell. Biochem. 24: 271–285, 1984.CrossRefPubMedGoogle Scholar
  37. Melis A.: Dynamics of photosynthetic membrane composition and function. — BBA-Bioenergetics 1058: 87–106, 1991.CrossRefGoogle Scholar
  38. Mullineaux C.: Function and evolution of grana. — Trends Plant Sci. 10: 521–525, 2005.CrossRefPubMedGoogle Scholar
  39. Murata N.: Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. — Biochim. Biophys. Acta 172: 242–251, 1969.CrossRefPubMedGoogle Scholar
  40. Papageorgiou G.C., Govindjee: Photosystem II fluorescence: slow changes–scaling from the past.–J. Photoch. Photobio. B 104: 258–270, 2011.CrossRefGoogle Scholar
  41. Pfeiffer S., Krupinska K.: New insights in thylakoid membrane organization. — Plant Cell Physiol. 46: 1443–1451, 2005.CrossRefPubMedGoogle Scholar
  42. Pribil M., Labs M., Leister D.: Structure and dynamics of thylakoids in land plants. — J. Exp. Bot. 65: 1955–1972, 2014.CrossRefPubMedGoogle Scholar
  43. Reynolds E.S.: The use of lead citrate at high pH as an electronopaque stain in electron microscopy. — J. Cell Biol. 17: 208–212, 1963.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ruban A.V., Johnson M.P.: Visualizing the dynamic structure of the plant photosynthetic membrane. — Nat. Plants 1: 15161, 2015.CrossRefPubMedGoogle Scholar
  45. Su N., Wu Q., Shen Z. et al.: Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings. — Plant Growth Regul. 73: 227–235, 2014.CrossRefGoogle Scholar
  46. Takahashi H., Iwai M., Takahashi Y. et al.: Identification of the mobile light-harvesting complex II polypeptides for state transition in Chlamydomonas reinhardtii. — P. Natl. Acad. Sci. USA 103: 477–482, 2006.CrossRefGoogle Scholar
  47. Tanaka R, Tanaka A.: Chlorophyll b is not just an accessory pigment but a regulator of the photosynthetic antenna. — Porphyrins 9: 240–245, 2000.Google Scholar
  48. Tikkanen M., Aro E.-M.: Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. — Biochim. Biophys. Acta 1817: 232–238, 2012.CrossRefPubMedGoogle Scholar
  49. Tikkanen M., Nurmi M., Suorsa M. et al.: Phosphorylationdependent regulation of excitation energy distribution between the two photosystems in higher plants. — Biochim. Biophys. Acta 1777: 425–432, 2008.CrossRefPubMedGoogle Scholar
  50. Tikkanen M., Piippo M., Suorsa M. et al.: State transitions revisited–a buffering system for dynamic low light acclimation of Arabidopsis. — Plant Mol. Biol. 62: 779–793, 2006.CrossRefPubMedGoogle Scholar
  51. Vlasova M.P., Osipova O.P.: [Effect of light intensity on fine structure of the chloroplasts in Vicia faba plants.]–Fiziol. Rast. 20: 742–746, 1973. [In Russian]Google Scholar
  52. Wagner R., Dietzel L., Bräutigam K. et al.: The long-term response to fluctuating light quality is an important and distinct light acclimation mechanism that supports survival of Arabidopsis thaliana under low light conditions. — Planta 228: 573–587, 2008.CrossRefPubMedGoogle Scholar
  53. Ware M. A., Belgio E., Ruban A.V.: Photoprotective capacity of non-photochemical quenching in plants acclimated to different light intensities. — Photosynth. Res. 126: 261–274, 2015.CrossRefPubMedGoogle Scholar
  54. Weakley B.S.: A Beginner’s Handbook in Biological Electron Microscopy. Pp. 228. Churchill Livingstone, Edinburg and London 1972.Google Scholar
  55. Wientjes E., van Amerongen H., Croce R.: LHCII is an antenna of both photosystems after long-term acclimation. — Biochim. Biophys. Acta 1827: 420–426, 2013.CrossRefPubMedGoogle Scholar
  56. Yoshioka-Nishimura M.: Close relationships between the PSII repair cycle and thylakoid membrane dynamics. — Plant Cell Physiol. 57: 1115–1122, 2016.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2017

Authors and Affiliations

  • G. V. Kochetova
    • 1
  • O. B. Belyaeva
    • 1
  • D. S. Gorshkova
    • 1
  • T. A. Vlasova
    • 1
  • E. M. Bassarskaya
    • 1
  • T. V. Zhigalova
    • 1
  • O. V. Avercheva
    • 1
  1. 1.Faculty of BiologyM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations