, Volume 56, Issue 3, pp 750–762 | Cite as

Ameliorative role of salicylic acid and spermidine in the presence of excess salt in Lycopersicon esculentum

  • Q. FariduddinEmail author
  • T. A. Khan
  • M. Yusuf
  • S. T. Aafaqee
  • R. R. A. E. Khalil


Salicylic acid (SA) and polyamines (PA) are widely used to overcome various abiotic stresses including salt (NaCl) stress in plants. In the present investigation, co-application efficacies of SA and PA on the salt stress (200 mM NaCl) were evaluated in Lycopersicon esculentum. After transplantation, at 10-d stage, seedlings were exposed to NaCl through soil and then allowed to grow till 30-d stage. At 31-d stage of growth, plants were sprayed with double distilled water (control) or spermidine (1.0 mM) and/or SA (10–5 M). The salt stress significantly reduced the growth, gas-exchange parameters, but increased antioxidant enzymes and proline content in the leaves. Moreover, the loss caused by salt stress was successfully restored by the following treatment of spermidine and SA.

Additional key words

abiotic stress antioxidant photosynthesis proline 



intercellular CO2 concentration


carbonic anhydrase






days after sowing


double distilled water


dry mass


fresh mass


stomatal conductance


least significant difference


nitrate reductase






net photosynthetic rate


reactive oxygen species


salicylic acid




superoxide dismutase


soil and plant analysis development


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal S., Sairam F.K., Srivastava G.C. et al.: Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings.–Plant Sci. 169: 559–570, 2005.CrossRefGoogle Scholar
  2. Ahmad P., Azooz M.M., Prasad M.N.V.: Ecophysiology and Responses of Plants under Salt Stress. Pp. 149–168. Springer Science & Business Media, New York 2012b.Google Scholar
  3. Ahmad P., Hakeem K.U.R., Kumar A. et al.: Salt induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.).–Afr. J. Biotechnol. 11: 2694–2703, 2012a.Google Scholar
  4. Ahmad P., Jaleel C.A., Azooz M.M. et al.: Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants.–Bot. Res. Intern. 2: 11–20, 2009.Google Scholar
  5. Alarcon J.J., Sanchez-Blanco M.J., Bolarin M.C. et al.: Water relation and osmotic adjustment in Lycopersicum esculentum and L. pinnelli during short-term of salt exposure and recovery.–Physiol. Plantarum 89: 441–447, 1993.CrossRefGoogle Scholar
  6. Al-Hakimi A.M.A., Hamada A.M.: Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamin or sodium salicylate.–Biol. Plantarum 44: 253–261, 2001.CrossRefGoogle Scholar
  7. Ali Q., Athar H.R., Ashraf M.: Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide.–Plant Growth Regul. 56: 107–116, 2008.CrossRefGoogle Scholar
  8. Mohanty P., Saradhi P.P.: Effect of sodium chloride on primary photochemical activities in cotyledonary leaves of Brassica juncea.–Biochem. Physiol. 188: 1–12, 1992.Google Scholar
  9. Amor N.B., Jiménez A., Megdiche W. et al.: Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima.–Physiol. Plantarum 126: 446–457, 2006.CrossRefGoogle Scholar
  10. Amri E., Shahsavar A.: Response of lime seedlings (Citrus aurantifolia L.) to exogenous spermidine treatments under drought stress.–Aust. J. Basic Appl. Sci. 4: 4483–4489, 2010.Google Scholar
  11. Arfan M., Athar H.R., Ashraf M.: Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress?–J. Plant Physiol. 164: 685–694, 2007.PubMedCrossRefGoogle Scholar
  12. Ashraf M., Akram N.A., Arteca R.N. et al.: The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance.–Crit. Rev. Plant Sci. 29: 162–190, 2010.CrossRefGoogle Scholar
  13. Ashraf M., Athar H.R., Harris P.J.C. et al.: Some prospective strategies for improving crop salt tolerance.–Adv. Agron. 97: 45–110, 2008.CrossRefGoogle Scholar
  14. Athwal G.S., Huber S.C.: Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase.–Plant J. 29: 119–129, 2002.PubMedCrossRefGoogle Scholar
  15. Bais H.P., Ravishankar G.A.: Role of polyamines in the ontogeny of plants and their biotechnological applications.–Plant Cell Tiss. Org. 69: 1–34, 2002.CrossRefGoogle Scholar
  16. Bates L.S., Waldeen R.P., Teare I.D.: Rapid determination of free proline for water stress studies.–Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  17. Beauchamp C.O., Fridovich I.: Superoxide dismutase: improved assays and assays applicable to acrylamide gels.–Anal. Biochem. 44: 276–287, 1971.PubMedCrossRefGoogle Scholar
  18. Belkheiri O., Mulas M.: The effects of salt stress on growth, water relations and ion accumulation in two halophyte Atriplex species.–Environ. Exp. Bot. 86: 17–28, 2013.CrossRefGoogle Scholar
  19. Benavides M.P., Aizencang G., Tomaro M.L.: Polyamines in Helianthus annuus L. during germination under salt stress.–J. Plant Growth Regul. 16: 205–211, 1997.CrossRefGoogle Scholar
  20. Besford R.T., Richardson C.M., Campos J.L. et al.: Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves.–Planta 189: 201–206, 1993.CrossRefGoogle Scholar
  21. Bethkey P.C., Drew M.C.: Stomatal and non-stomatal components to inhibition of photosynthesis in leaves of Capsicum annum during progressive exposure to NaCl salinity.–Plant Physiol. 99: 219–226, 1992.CrossRefGoogle Scholar
  22. Bouchereau A., Azis A., Larher F. et al.: Polyamines and environmental challenges: recent development.–Plant Sci. 140: 103–125, 1999.CrossRefGoogle Scholar
  23. Campbell H.W.: Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology.–Annu. Rev. Plant Phys. 50: 277–303, 1999.CrossRefGoogle Scholar
  24. Carswell G.K., Johnson C.M, Shillito R.D. et al.: O-acetylsalicylic acid promotes colony formation from protoplasts of an elite maize inbred.–Plant Cell Rep. 8: 282–284, 1989.PubMedCrossRefGoogle Scholar
  25. Chance B., Maehly A.C.: Assay of catalase and peroxidases.–Method. Enzymol. 2: 764–775, 1955.CrossRefGoogle Scholar
  26. Chandra A., Bhatt R.K.: Biochemical and physiological response to salicylic acid in relation to the systemic acquired resistance.–Photosynthetica 35: 255–258, 1998.CrossRefGoogle Scholar
  27. Chen C., Dickman M.B.: Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii.–P. Natl. Acad. Sci. USA 102: 3459–3464, 2005.CrossRefGoogle Scholar
  28. Childs A.C., Mehta D.J., Germer E.W.: Polyamine-dependent gene expression.–Cell Mol. Life. Sci. 60: 1394–1406, 2003.PubMedCrossRefGoogle Scholar
  29. Cohen S., Frank E., Doyle W.J. et al.: Types of stressors that increase susceptibility to the common cold in healthy adults.–Health Psychol. 17: 214–223, 1998.PubMedCrossRefGoogle Scholar
  30. DeLacerda C.F., Cambraia J., Oliva M.A. et al.: Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery.–Environ. Exp. Bot. 54: 69–76, 2005.CrossRefGoogle Scholar
  31. Duan J.J., Li J., Guo S.R. et al.: Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance.–J. Plant Physiol. 165: 1620–1635, 2008.PubMedCrossRefGoogle Scholar
  32. Dwivedi R.S., Randhawa N.S.: Evolution of a rapid test for the hidden hunger of zinc in plants.–Plant Soil 40: 445–451, 1974.CrossRefGoogle Scholar
  33. Fariduddin Q., Hayat S., Ahmad A.: Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea.–Photosynthetica 41: 281–284, 2003.CrossRefGoogle Scholar
  34. Feng G., Zhang F.S., Li X.L. et al.: Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots.–Mycorrhiza 12: 185–190, 2002.PubMedCrossRefGoogle Scholar
  35. Geissler N., Hussin S., Koyro H.W.: Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L.–J. Exp. Bot. 60: 137–151, 2009.PubMedCrossRefGoogle Scholar
  36. Gil-Amado J.A., Gomez-Jimenez M.C.: Regulation of polyamine metabolism and biosynthetic gene expression during olive mature-fruit abscission.–Planta 235: 1221–1237, 2012.PubMedCrossRefGoogle Scholar
  37. Groppa M.D., Benavides M.P., Tomaro M.L.: Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress.–Plant Sci. 164: 293–299, 2003.CrossRefGoogle Scholar
  38. Groppa M.D., Benavides M.P.: Polyamines and abiotic stress: recent advances.–Amino Acids 34: 35–45, 2008.PubMedCrossRefGoogle Scholar
  39. Hameed M., Nawaz T., Ashraf M. et al.: Physioanatomical adaptations in response to salt stress in Sporobolus arabicus (Poaceae) from the Salt Range, Pakistan.–Turk. J. Bot. 37: 715–724, 2013.Google Scholar
  40. Hayat S., Fariduddin Q., Ali B. et al.: Effect of salicylic acid on growth and enzyme activities of wheat seedlings.–Acta Agron. Hung. 53: 433–437, 2005.CrossRefGoogle Scholar
  41. Hayat S., Hasan S.A., Yusuf M. et al.: Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata.–Environ. Exp. Bot. 69: 105–112, 2010.CrossRefGoogle Scholar
  42. Hayat S., Maheshwari P., Wani A.S. et al.: Comparative effect of homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L.–Plant Physiol. Bioch. 53: 61–68, 2012.CrossRefGoogle Scholar
  43. He Y.L., Liu Y., Chen Q. et al.: Thermotolerance related to antioxidation induced by salicylic acid and heat acclimation in tall fescue seedlings.–J. Plant Phys. 28: 89–95, 2002.Google Scholar
  44. Hopkins W.G., Hüner N.P.A.: Introduction to Plant Physiology. Pp. 503. John Wiley & Sons, Inc., Hoboken 2009.Google Scholar
  45. Hussain S.S., Ali M., Ahmad M. et al.: Polyamines: natural and engineered abiotic and biotic stress tolerance in plants.–Biotechnol. Adv. 29: 300–311, 2011.PubMedCrossRefGoogle Scholar
  46. Hussein M.M., Balbaa L.K., Gaballah M.S.: Salicylic acid and salinity effects on growth of maize plants.–J. Agric. Biol. Sci. 3: 321–328, 2007.Google Scholar
  47. Idrees M., Naeem M., Khan M.N. et al.: Alleviation of salt stress in lemongrass by salicylic acid.–Protoplasma 249: 709–720, 2012.PubMedCrossRefGoogle Scholar
  48. Iyengar E.R.R., Reddy M.P.: Photosynthesis in highly salt tolerant plants.–In: Pessarakli M. (ed.): Handbook of Photosynthesis. Pp. 897–909. Marcel Dekker, New York 1996.Google Scholar
  49. Jaworski E.G.: Nitrate reductase assay in intact plant tissues.–Biochem. Biophys. Res. Co. 43: 1274–1279, 1971.CrossRefGoogle Scholar
  50. Jayakannan M., Bose J., Babourina O. et al.: Salicylic acid in plant salinity stress signalling and tolerance.–Plant Growth Regul. 76: 25–40, 2015.CrossRefGoogle Scholar
  51. Karim M.A., Fracheboud Y., Stamp P.: Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than of developed leaves.–Physiol. Plantarum 105: 685–693, 1999.CrossRefGoogle Scholar
  52. Kausar F., Shahbaz M., Ashraf M. et al.: Protective role of foliar applied nitric oxide in Triticum aestivum under saline stress.–Turk. J. Bot. 37: 1155–1165, 2013.CrossRefGoogle Scholar
  53. Khan M.H., Panda S.K.: Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaClsalinity stress.–Acta Physiol. Plant. 30: 81–89, 2008.CrossRefGoogle Scholar
  54. Khodary S.E.A.: Effect of salicylic acid on growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants.–Int. J. Agric. Biol. 6: 5–8, 2004.Google Scholar
  55. Kim N.H., Kim B.S., Hwang B.K.: Pepper arginine decarboxylase is required for polyamine and gamma-aminobutyric acid signaling in cell death and defense response.–Plant Physiol. 162: 2067–2083, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Koca M., Bor M., Özdemir F. et al.: The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of Sesame cultivars.–Environ. Exp. Bot. 60: 344–351, 2007.CrossRefGoogle Scholar
  57. Krishnamurthy R.: Amelioration of salinity effect in salt tolerant rice (Oryza sativa L.) by foliar application of putrescine.–Plant Cell Physiol. 32: 699–703, 1991.CrossRefGoogle Scholar
  58. Lakra N., Mishra S.N., Singh D.B. et al.: Exogenous putrescine effect on cation concentration in leaf of Brassica juncea seedlings subjected to Cd and Pb along with salinity stress.–J. Environ. Biol. 27: 263–269, 2006.Google Scholar
  59. Lee J., Sperandio V., Frantz D.E. et al.: An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae.–J. Biol. Chem. 284: 9899–9907, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Li S., Jin H., Zhang Q.: The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in Zoysiagrass (Zoysia japonica Steud) subjected to short-term salinity stress.–Front. Plant Sci. 7: 1221, 2016.PubMedPubMedCentralGoogle Scholar
  61. Li T.X., Yue Z., Hua L. et al.: Stable expression of Arabidopsis vacuolar Na+ /H+ antiporter gene AtNHX1 and salt tolerance in transgenic soybean for over six generations.–Chinese Sci. Bull. 55: 1127–1134, 2010.CrossRefGoogle Scholar
  62. Liu J., Zhou Y.F., Zhang W.H. et al.: Effects of exogenous polyamines on chloroplast-bound polymine content and photosynthesis of corn suffering salt stress.–Acta Bot. Boreal. 26: 254–258, 2006.Google Scholar
  63. Manaa A., Gharbi E., Mimouni H. et al.: Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars.–South Afr. J. Bot. 95: 32–39, 2014.CrossRefGoogle Scholar
  64. Mateo A., Mühlenbock P., Rustérucci C. et al.: Lesion simulating disease 1 is required for acclimation to conditions that promote excess excitation energy.–Plant Physiol. 136: 2818–2830, 2004.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Melotto M., Underwood W., Koczan J. et al.: Plant stomata function in innate immunity against bacterial invasion.–Cell 126: 969–980, 2006.PubMedCrossRefGoogle Scholar
  66. Metwally A., Finkmemeier I., Georgi M. et al.: Salicylic acid alleviates the cadmium toxcity in barley seedlings.–Plant Physiol. 132: 272–281, 2003.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Mimouni H., Wasti S., Manaa A. et al.: Does salicylic acid (SA) improve tolerance to salt stress in plants? a study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters.–OMICS 20: 180–190, 2016.PubMedCrossRefGoogle Scholar
  68. Mir B.A., Khan T.A., Fariduddin Q.: 24-epibrassinolide and spermidine modulate photosynthesis and antioxidant systems in Vigna radiata under salt and zinc stress.–Int. J. Adv. Res. 3: 592–608, 2015.Google Scholar
  69. Mittler R.: Oxidative stress, antioxidants and stress tolerance.–Trends Plant Sci. 7: 405–410, 2002.PubMedCrossRefGoogle Scholar
  70. Moharekar S.T., Lokhande S.D., Hara T. et al.: Effect of salicylic acid on chlorophyll and carotenoid contents of wheat and moong seedlings.–Photosynthetica 41: 315–317, 2003.CrossRefGoogle Scholar
  71. Munné-Bosch S.M., Peñuelas J., Llusià J.: A deficiency in salicylic acid alters isoprenoid accumulation in water stressed transgenic Arabidopsis plants.–Plant Sci. 172: 756–762, 2007.CrossRefGoogle Scholar
  72. Munns R.: Genes and salt tolerance: bringing them together.–New Phytol. 167: 645–663, 2005.PubMedCrossRefGoogle Scholar
  73. Murphy K.S.T., Kinsey S.T., Durako M.J.: Physiological effects of short term salinity changes on Ruppia maritima.–Aquat Bot. 75: 293–309, 2003.CrossRefGoogle Scholar
  74. Mutlu F., Bozcuk S.: Effects of salinity on the contents of polyamines and some other compounds in sunflower plants differing in salt tolerance.–Russ. J. Plant Physl+ 52: 29–34, 2005.CrossRefGoogle Scholar
  75. Najafian S., Khoshkhui M., Tavallali V. et al.: Effect of salicylic acid and salinity in thyme (Thymus vulgaris L.): Investigation on changes in gas exchange, water relations, and membrane stabilization and biomass accumulation.–Aust. J. Basic Appl. Sci. 3: 2620–2626, 2009.Google Scholar
  76. Ouerghi Z., Cornic G., Roudani M. et al.: Effect of NaCl on the photosynthesis of two wheat species differing in their sensitivity to salt stress.–J. Plant Physio. 156: 335–340, 2000.CrossRefGoogle Scholar
  77. Pál M.E., Horváth T., Janda E. et al.: Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants.–Physiol. Plantarum 125: 356–364, 2005.CrossRefGoogle Scholar
  78. Parashar A., Yusuf M., Fariduddin Q. et al.: Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese.–Int. J. Biol. Macromol. 70: 551–558, 2014.PubMedCrossRefGoogle Scholar
  79. Pirasteh-Anosheh H., Ranjbar G., Emam Y. et al.: Salicylic-acidinduced recovery ability in salt-stressed Hordeum vulgare plants.–Turk. J. Bot. 38: 112–121, 2014.CrossRefGoogle Scholar
  80. Pothipongsa A., Jantaro S., Incharoensakdi A.: Polyamines induced by osmotic stress protect Synechocystis sp. PCC 6803 cells and arginine decarboxylase transcripts against UV-B radiation.–Appl. Biochem. Biotech. 168: 1476–1488, 2012.CrossRefGoogle Scholar
  81. Qadir M., Quillé rou E., Nangia V. et al.: Economics of saltinduced land degradation and restoration.–Nat. Resour. Forum. 38: 282–295, 2014.CrossRefGoogle Scholar
  82. Rady M.M.: Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress.–Sci. Hortic.-Amsterdam 129: 232–237, 2011.CrossRefGoogle Scholar
  83. Rajjou L., Belghazi M., Huguet R. et al.: Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms.–Plant Physiol. 141: 910–923, 2006.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rider J.E., Hacker A., Mackintosh C.A et al.: Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide.–Amino Acids 33: 231–240, 2007.PubMedCrossRefGoogle Scholar
  85. Rosales E.P., Iannone M.F., Groppa M.D. et al.: Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide.–Amino Acids 42: 857–865, 2012.PubMedCrossRefGoogle Scholar
  86. Sekmen A.H., Turkan I, Tanyolac Z.O. et al.: Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata Bark.–Environ. Exp. Bot. 77: 63–76, 2012.CrossRefGoogle Scholar
  87. Sen G., Eryilmaz I.E., Ozakca D.: The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina.–Phytochemistry 98: 54–59, 2014.PubMedCrossRefGoogle Scholar
  88. Seneratna T., Touchell D., Bunn E. et al.: Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants.–Plant Growth Regul. 30: 157–161, 2000.CrossRefGoogle Scholar
  89. Sheokand S., Kumari A., Sawhney V.: Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants.–Physiol. Mol. Biol. Plant. 14: 355–362, 2008.CrossRefGoogle Scholar
  90. Silveira V., De Vita A.M., Macedo A.F. et al.: Morphological and polyamine content changes in embryogenic and nonembryogenic callus of sugarcane.–Plant Cell Tiss. Org. 114: 351–364, 2013.CrossRefGoogle Scholar
  91. Singh B., Usha K.: Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress.–Plant Growth Regul. 39: 137–141, 2003.CrossRefGoogle Scholar
  92. Slaymaker D.H., Navarre D.A., Clark D. et al.: The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response.–P. Natl. Acad. Sci. USA 99: 11640–11645, 2002.CrossRefGoogle Scholar
  93. Soussi M., Ocañ a A., Lluch C.: Effect of salt stress growth, photosynthesis and nitrogen fixation in chick-(Cicer arietinum L.).–J. Exp. Bot. 49: 1329–1337, 1998.CrossRefGoogle Scholar
  94. Strobel N.E., Kuc A.: Chemical and biological inducers of systemic acquired resistance to pathogens protect cucumber and tobacco from damage caused by paraquat and cupric chloride.–Phytopathology 85: 1306–1310, 1995.CrossRefGoogle Scholar
  95. Sudhir P., Murthy S.D.S.: Effects of salt stress on basic processes of photosynthesis.–Photosynthetica 42: 481–486, 2004.CrossRefGoogle Scholar
  96. Sullivan C.Y., Ross W.M.: Selecting the drought and heat resistance in grain sorghum.–In: Mussel H, Staples R.C. (ed.): Stress Physiology in Crop Plants. Pp. 263–281. John Wiley & Sons, Inc, New York 1979.Google Scholar
  97. Sung M.S., Chow T.J., Lee T.M.: Polyamine acclimation alleviates hypersalinity-induced oxidative stress in a marine green macroalga, Ulva fasciata, by modulation of antioxidative enzyme gene.–J. Phycol. 47: 538–547, 2011.PubMedCrossRefGoogle Scholar
  98. Szabados L., Savouré A.: Proline: a multifunctional amino acid.–Trends Plant Sci. 15: 89–97, 2010.PubMedCrossRefGoogle Scholar
  99. Szepesi A., Csiszár J., Bajkán S.Z. et al.: Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress.–Acta Biol. Szeged 49: 123–125, 2005.Google Scholar
  100. Tabor C.W., Tabor H.: Polyamines.–Annu. Rev. Biochem. 5: 749–790, 1984.CrossRefGoogle Scholar
  101. Tadayon M.R., Emam Y.: Physiological and morphological responses of two barley cultivars to salt stress and their correlation with grain yield.–Agric. Nat. Res. Sci. Tech. 11: 253–262, 2007.Google Scholar
  102. Tanou G., Filippou P., Belghazi M. et al.: Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress.–Plant J. 72: 585–599, 2012.PubMedCrossRefGoogle Scholar
  103. Tanou G., Ziogas V., Belghazi M. et al.: Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress.–Plant Cell Environ. 37: 864–885, 2014.PubMedCrossRefGoogle Scholar
  104. Tari I., Csiszár J., Szalai G. et al.: Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment.–Acta Biol. Szeged 46: 55–56, 2002.Google Scholar
  105. Tiburcio A.F., Kaur-Sawhney R., Galston A.W.: Polyamine metabolism.–In: Miflin B.J., Lea P.J. (ed.): Intermedatory Nitrogen Metabolism. The Biochem of Plants. Pp. 283–325. Academic Press, Cambridge 1990.CrossRefGoogle Scholar
  106. Tisi A., Federico R., Moreno S. et al.: Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation.–Plant Physiol. 157: 200–215, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Unni S., Rao K.K.: Protein and lipopolysaccharide profiles of a salt-sensitive Rhizobium sp. and its exopolysaccharidedeficient mutant.–Soil Biol. Biochem. 33: 111–115, 2001.CrossRefGoogle Scholar
  108. Uzunova A.N., Popova L.P.: Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants.–Photosynthetica 38: 243–250, 2000.CrossRefGoogle Scholar
  109. Verslues P.E., Agarwal M., Katiyar-Agarwal S. et al.: Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status.–Plant J. 45: 523–539, 2006.PubMedCrossRefGoogle Scholar
  110. Wang M., Jiang W., Yu H.: Effects of exogenous epibrassinolide on photosynthetic characteristics in tomato (Lycopersicon esculentum Mill) seedlings under weak light stress.–J Agr. Food Chem. 8: 3642–3645, 2010.CrossRefGoogle Scholar
  111. Wani A.S., Ahmad A., Hayat S. et al.: Is foliar spray of proline sufficient for mitigation of salt stress in Brassica juncea cultivars?–Environ. Sci. Pollut. R. 23: 13413–13423, 2016.CrossRefGoogle Scholar
  112. Wani A.S., Ahmad A., Hayat S. et al.: Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea.–Saudi J. Biol. Sci. 20: 183–193, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wu X.X., Ding H.D., Zhu Z.W. et al.: Effects of 24-epibrassinolide on photosynthesis of eggplant (Solanum melongena L.) seedlings under salt stress.–Afr. J. Biotechnol. 11: 8665–8671, 2012.CrossRefGoogle Scholar
  114. Xu G., Magen H., Tarchitzky J. et al.: Advances in chloride nutrition of plants.–Adv. Agr. 68: 97–150, 1999.CrossRefGoogle Scholar
  115. Yamaguchi K., Takahashi Y., Berberich T. et al.: A protective role for the polyamine spermine against drought stress in Arabidopsis.–Biochem. Biophys. Res. Co. 352: 486–490, 2007.CrossRefGoogle Scholar
  116. Yang W.J., Rich P.J., Axtell J.D. et al.: Genotypic variation for glycine betaine in Sorghum.–Crop Sci. 43: 162–169, 2003.CrossRefGoogle Scholar
  117. Yusuf M., Hasan S.A., Ali B. et al.: Effect of salicylic acid on salinity induced changes in Brassica juncea.–J. Integr. Plant. Biol. 50: 1–4, 2008.CrossRefGoogle Scholar
  118. Zheng C., Jiang D., Liu F. et al.: Effects of salt and water logging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat.–Plant Sci. 176: 575–582, 2009.PubMedCrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2017

Authors and Affiliations

  • Q. Fariduddin
    • 1
    Email author
  • T. A. Khan
    • 1
  • M. Yusuf
    • 1
  • S. T. Aafaqee
    • 1
  • R. R. A. E. Khalil
    • 2
  1. 1.Plant Physiology and Biochemistry Section, Department of BotanyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Botany, Faculty of ScienceBenha UniversityBenhaEgypt

Personalised recommendations