Advertisement

Photosynthetica

, Volume 56, Issue 2, pp 641–651 | Cite as

Improvement of grapevine physiology and yield under summer stress by kaolin-foliar application: water relations, photosynthesis and oxidative damage

  • L.-T. Dinis
  • A. C. Malheiro
  • A. Luzio
  • H. Fraga
  • H. Ferreira
  • I. Gonçalves
  • G. Pinto
  • C. M. Correia
  • J. Moutinho-Pereira
Original paper

Abstract

Knowledge about short-term climate change adaptation strategies for Mediterranean vineyards is needed in order to improve grapevine physiology and yield-quality attributes. We investigated effects of kaolin-particle film suspension on water relations, photosynthesis and oxidative stress of field-grown grapevines in the Douro region (northern Portugal) in 2012 and 2013. Kaolin suspension decreased leaf temperature by 18% and increased leaf water potential (up to 40.7% in 2013). Maximum photochemical quantum efficiency of PSII was higher and the minimal chlorophyll fluorescence was lower in the plants sprayed by kaolin. Two months after application, net photosynthesis and stomatal conductance at midday increased by 58.7 and 28.4%, respectively, in treated plants. In the same period, kaolin treatment increased photochemical reflectance, photosynthetic pigments, soluble proteins, soluble sugars, and starch concentrations, while decreased total phenols and thiobarbituric acid-reactive substances. Kaolin application can be an operational tool to alleviate summer stresses, which ameliorates grapevine physiology and consequently leads to a higher yield.

Additional key words

biochemistry Douro region oxidative stress Vitis vinifera 

Abbreviations

Chl

chlorophyll

Car

carotenoid

Ci/Ca

internal CO2 concentration/ambient CO2 ratio

E

transpiration rate

ETR

photosynthetic electron transport rate

F0

minimal chlorophyll fluorescence

Fv

variable chlorophyll fluorescence

Fm

maximal chlorophyll fluorescence

Fv/Fm

maximum photochemical quantum efficiency of PSII

Fv’/Fm

capture efficiency of excitation energy by open PSII reaction centres

gs

stomatal conductance

PN

net CO2 assimilation rate

qN

nonphotochemical quenching

qP

photochemical quenching

RIred edge

chlorophyll reflectance index

SP

soluble proteins

SS

soluble sugars

St

starch

TBARS

thiobarbituric acid-reactive substances

TP

total phenols

ΦPSII

actual PSII efficiency

Ψmd

midday leaf water potential

Ψpd

predawn leaf water potential

Ψpd

WUEi-PN/gs, intrinsic water-use efficiency

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2017_714_MOESM1_ESM.pdf (152 kb)
Supplementary material, approximately 228 KB.
11099_2017_714_MOESM2_ESM.pdf (217 kb)
Supplementary material, approximately 228 KB.

References

  1. Ashraf M., Harris P.J.C.: Potential biochemical indicators of salinity tolerance in plants. — Plant Sci. 166: 3–16, 2004.CrossRefGoogle Scholar
  2. Bacelar E.A., Santos D.L., Moutinho-Pereira J.M. et al.: Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: Changes on structure and chemical composition of foliage and oxidative damage. — Plant Sci. 170: 596–605, 2006.CrossRefGoogle Scholar
  3. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. — Annu. Rev. Plant Biol. 59: 89–113, 2008.CrossRefPubMedGoogle Scholar
  4. Bilger W., Schreiber U.: Energy-dependent quenching of darklevel chlorophyll fluorescence in intact leaves. — Photosynth. Res. 10: 303–308, 1986.CrossRefPubMedGoogle Scholar
  5. Bradford M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.CrossRefPubMedGoogle Scholar
  6. Centritto M., Wahbi S., Serraj R., Chaves M.M.: Effects of partial root–zone (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate. II. Photosynthetic responses. — Agr. Ecosyst. Environ. 106: 303–311, 2005.CrossRefGoogle Scholar
  7. Chaves M.M., Santos T., Souza C.R. et al.: Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. — Ann. Appl. Biol. 150: 237–252, 2007.CrossRefGoogle Scholar
  8. Costa H., Gallego, S.M., Tomaro, M.L.: Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. — Plant Sci. 162: 939–945, 2002.CrossRefGoogle Scholar
  9. DaMatta F.M., Loos R.A., Silva E.A., Loureiro M.E.: Limitations to photosynthesis in Coffea canephora as a result of nitrogen and water availability. — J. Plant Physiol. 159: 975–981, 2002.CrossRefGoogle Scholar
  10. Dinis L.-T., Correia C.M., Ferreira H.F., Gonçalves B. et al.: Physiological and biochemical responses of Semillon and Muscat Blanc à Petits Grains winegrapes grown under Mediterranean climate. — Sci. Hortic.-Amsterdam 175: 128–138, 2014.CrossRefGoogle Scholar
  11. Dinis L.-T., Ferreira H., Pinto G. et al.: Kaolin-based, foliar reflective film protects photosystem II structure and function in grapevine leaves exposed to heat and high solar radiation. — Photosynthetica 54: 47–55, 2016a.CrossRefGoogle Scholar
  12. Dinis L.-T., Bernardo S., Conde A. et al.: Kaolin exogenous application boosts antioxidant capacity and phenolic content in berries and leaves of grapevine under summer stress. — J. Plant Physiol. 191: 45–53, 2016b.CrossRefPubMedGoogle Scholar
  13. dos Santos T.P., Lopes C.M., Rodrigues M.L. et al.: Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines. — Sci. Hortic.-Amsterdam 112: 321–330, 2007.CrossRefGoogle Scholar
  14. Epron D., Dreyer E. Bréda N.: Photosynthesis of oak trees (Quercus petraea (Matt) Liebl.) during drought stress under field conditions: diurnal course of net CO2 assimilation and photochemical efficiency of photosystem II. — Plant Cell Environ. 15: 809–820, 1992.CrossRefGoogle Scholar
  15. FAO: World Reference Base for Soil Resources 2014, update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. FAO, Rome 2015.Google Scholar
  16. Ferrandino A., Lovisolo C.: Abiotic stress effects on grapevine (Vitis vinifera L.): Focus on abscisic acid-mediated consequences on secondary metabolism and berry quality. — Environ. Exp. Bot. 103: 138–147, 2014.CrossRefGoogle Scholar
  17. Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos J.A.: Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. — Int. J. Biometeorol. 57: 909–925, 2013.CrossRefPubMedGoogle Scholar
  18. Fraga H., Malheiro A.C., Moutinho-Pereira J. et al.: Very high resolution bioclimatic zoning of Portuguese wine regions: present and future scenarios. — Reg. Environ. Change 14: 295–306, 2014a.CrossRefGoogle Scholar
  19. Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos J.A.: Climate factors driving wine production in the Portuguese Minho region. — Agr. Forest Meteorol. 185: 26–36, 2014b.CrossRefGoogle Scholar
  20. Fraga H., de Cortázar Atauri I.G., Malheiro A.C, Santos J.A.: Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. — Glob. Change Biol. 22: 3774–3788, 2016.CrossRefGoogle Scholar
  21. Gamon J.A., Pearcy R.W.: Leaf movement, stress avoidance and photosynthesis in Vitis californica. — Oecologia 79: 475–481, 1989.CrossRefPubMedGoogle Scholar
  22. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta. 990: 87–92, 1989.CrossRefGoogle Scholar
  23. Gitelson A.A., Merzlyak M.N.: Non-destructive assessment of chlorophyll, carotenoid and anthocyanin content in higher plant leaves: Principles and algorithms. — In: Stamatiadis S., Lynch J.M., Shepers J.S. (ed.): Non-destructive Assessment of Chlorophyll, Carotenoids and Anthocyanin Content in Higher Plant Leaves: Principles and Algo-rithms. Remote Sensing for Agriculture and the Environment. Pp. 78–94. Ella, Greece 2004.Google Scholar
  24. Glenn D.M., Erez A., Puterka G.J., Gundrum P.: Particle films affect carbon assimilation and yield in ‘Empire’ apple. — J. Am. Soc. Hortic. Sci. 128: 356–362, 2003.Google Scholar
  25. Glenn D.M., Puterka G.J.: Particle films: A new technology for agriculture. — In: Janick J. (ed.): Horticultural Reviews, Vol. 31. Pp. 1–44, John Wiley & Sons, New Jersey 2005.Google Scholar
  26. Glenn D.M., Puterka G.J., Drake S.R. et al.: Particle film application influences apple leaf physiology fruit yield and fruit quality. — J. Am. Soc. Hortic. Sci. 126: 175–181, 2001.Google Scholar
  27. Hannah L., Roehrdanz P.R., Ikegami M. et al.: Climate change, wine, and conservation. — P. Natl. Acad. Sci. USA 110: 6907–6912, 2013.CrossRefGoogle Scholar
  28. Heath R.L., Packer L.: Photoperoxidation in isolated chloroplasts. I Kinetics and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.CrossRefPubMedGoogle Scholar
  29. Iacono F., Buccella A., Peterlunger E.: Water stress and rootstock influence on leaf gas exchange of grafted and ungrafted grapevines. — Sci. Hortic.-Amsterdam 75: 27–39, 1998.CrossRefGoogle Scholar
  30. IPCC.: Climate Change. The Physical Science Basis. Summary for Policymakers. Working Group I Contribution to the IPCC Fifth Assessment Report. Pp. 1–28. Cambridge Univ. Press, Cambridge 2013.Google Scholar
  31. Irigoyen J.J., Einerich D.W., Sánchez-Diáz M.: Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. — Plant Physiol. 84: 55–60, 1992.CrossRefGoogle Scholar
  32. Jifon J.L., Syvertsen J.P.: Kaolin particle film applications can increase photosynthesis and water use efficiency of ‘Ruby Red’ grapefruits leaves. — J. Am. Soc. Hortic. Sci. 128: 107–112, 2003.Google Scholar
  33. Jones G.V., White M.A., Cooper O.R., Storchmann K.: Climate change and global wine quality. — Climatic Change 73: 319–343, 2005.CrossRefGoogle Scholar
  34. Koricheva J., Larsson S., Haukioja E., Keinänen M.: Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. — Oikos 83: 212–226, 1998.CrossRefGoogle Scholar
  35. Kottek M., Grieser J., Beck C.: World Map of the Köppen-Geiger climate classification updated. — Meteorol Z. 15: 259–263, 2006.CrossRefGoogle Scholar
  36. Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. — Methods Enzymol. 148: 350–382, 1987.CrossRefGoogle Scholar
  37. Marinari S., Calfapietra C., De Angelis P. et al.: Impact of elevated CO2 and nitrogen fertilization on foliar elemental composition in a short rotation poplar plantation. — Environ. Pollut. 147: 507–515, 2007.CrossRefPubMedGoogle Scholar
  38. Medrano H., Escalona J.M., Bota J. et al.: Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter. — Ann. Bot.-London 89: 895–905, 2002.CrossRefGoogle Scholar
  39. Merzlyak M.N., Solovchenko A.E., Gitelson A.A.: Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. — Postharvest Biol. Tec. 27: 197–211, 2003.CrossRefGoogle Scholar
  40. Moutinho-Pereira J., Correia C.M., Gonçalves B. et al.: Impacts of leafroll associated viruses (GLRaV-1 and-3) on the physiology of the Portuguese grapevine cultivar 'Touriga Nacional' growing under field conditions. — Ann. Appl. Biol. 160: 237–249, 2012.CrossRefGoogle Scholar
  41. Moutinho-Pereira J.M., Correia C.M., Gonçalves B. et al.: Leaf gas-exchange and water relations of grapevines grown in three different conditions. — Photosynthetica 42: 81–86, 2004.CrossRefGoogle Scholar
  42. Moutinho-Pereira J.M., Magalhães N., Gonçalves B.: Gas exchange and water relations of three Vitis vinifera L. cultivars growing under Mediterranean climate. — Photosynthetica 45: 202–207, 2007.CrossRefGoogle Scholar
  43. Osaki M., Shinano T., Tadano T.: Redistribution of carbon and nitrogen compound from the shoot to the harvesting organs during maturation in field crops. — Soil Sci. Plant Nutr. 37: 117–128, 1991.CrossRefGoogle Scholar
  44. Patakas A., Noitsakis B.: Leaf age effects on solute accumulation in water-stressed grapevines. — J. Plant Physiol. 158: 63–69, 2001.CrossRefGoogle Scholar
  45. Poni S., Bernizzoni F., Civardi S.: Performance and water-use efficiency (single-leaf vs. whole-canopy) of well-watered and half-stressed split-root Lambrusco grapevines grown in Po Valley (Italy). — Agr. Ecosyst. Environ. 129: 97–106, 2009.CrossRefGoogle Scholar
  46. Rosati A., Metcalf S.G., Buchner R.P. et al.: Physiological effects of kaolin applications in well-irrigated and waterstressed walnut and almond trees. — Ann. Bot.-London 98: 267–275, 2006.CrossRefGoogle Scholar
  47. Sampol B., Bota J., Riera D. et al.: Analysis of the virus-induced inhibition of photosynthesis in malmsey grapevines. — New Phytol. 160: 403–412, 2003.CrossRefGoogle Scholar
  48. Santos C.V., Caldeira G.: Comparative responses of Helianthus annuus plants and calli exposed to NaCl. I. Growth rate and osmotic adjustment in intact plants and calli. — J. Plant Physiol. 155: 769–777, 1999.CrossRefGoogle Scholar
  49. Šesták Z., Čatský J., Jarvis P.G.: Plant Photosynthetic Production. Manual of Methods. Pp. 818. Dr. W. Junk Publ., Haia 1971.Google Scholar
  50. Shalata A., Tal A.: The effects of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. — Physiol. Plantarum 104: 169–174, 1998.CrossRefGoogle Scholar
  51. Shellie K.C., King B.A.: Kaolin particle film and water deficit influence malbec leaf and berry temperature, pigments, and photosynthesis. — Am. J. Enol. Viticult. 64: 223–230, 2013.CrossRefGoogle Scholar
  52. Singleton V.L., Rossi J.A.J.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. — Am. J. Enol. Viticult. 16: 144–158, 1965.Google Scholar
  53. Smirnoff N.: The role of active oxygen in the response of plants to water deficit and desiccation. — New Phytol. 125: 27–58, 1993.CrossRefGoogle Scholar
  54. Valladares R., Pearcy R.W.: Interaction between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. — Plant Cell Environ. 20: 25–36, 1997.CrossRefGoogle Scholar
  55. von Caemmerer S., Farquhar G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. — Planta 153: 376–387, 1981.CrossRefGoogle Scholar
  56. Wen P.-F., Chen J.-Y., Wan S.-B. et al.: Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. — Plant Growth Regul. 55: 1–10, 2008.CrossRefGoogle Scholar
  57. Yadav V.K., Gupta V., Neelam Y.: Hormonal regulation of nitrate in gram (Cicer arietinum) genotypes under drought. — Indian J. Agr. Sci. 69: 592–595, 1999.Google Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • L.-T. Dinis
    • 1
  • A. C. Malheiro
    • 1
  • A. Luzio
    • 1
  • H. Fraga
    • 1
  • H. Ferreira
    • 1
  • I. Gonçalves
    • 2
  • G. Pinto
    • 3
  • C. M. Correia
    • 1
  • J. Moutinho-Pereira
    • 1
  1. 1.Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)Universidade de Trás-os-Montes e Alto DouroVila RealPortugal
  2. 2.Associação para o Desenvolvimento da Viticultura Duriense (ADVID), Edifício Centro de Excelência da Vinha e do VinhoParque de Ciência e Tecnologia de Vila Real – Régia Douro ParkVila RealPortugal
  3. 3.Department of Biology & CESAM – Centre for Environmental and Marine Studies, Universidade de AveiroCampus Universitário de SantiagoAveiroPortugal

Personalised recommendations