Advertisement

Photosynthetica

, Volume 56, Issue 2, pp 567–577 | Cite as

Response of photosystem II performance and antioxidant enzyme activities in stay-green wheat to cytokinin

  • D. Q. Yang
  • Y. L. Luo
  • W. H. Dong
  • Y. P. Yin
  • Y. LiEmail author
  • Z. L. WangEmail author
Original paper

Abstract

WN6 (a stay-green wheat cultivar) and JM20 (control) were used to evaluate the effects of exogenous cytokinin on photosynthetic capacity and antioxidant enzymes activities in flag leaves. Results showed that WN6 reached the higher grain mass, which was mainly due to the higher photosynthetic rate resulting from the higher maximal quantum yield of PSII photochemistry (ΦPSII) and probability that a trapped exaction transfers an electron into the electron transport chain beyond QA (Ψo), and lower relative variable fluorescence intensity at the J-step (Vj). Exogenous 6-benzylaminopurine (6-BA) enhanced antioxidant enzymes activities and decreased malondialdehyde (MDA) content. Enhanced Ψo and electron transport rate (ETR), and decreased Vj contributed to improved photosynthetic rate in the 6-BA treatment. In addition, exogenous 6-BA significantly increased endogenous zeatin (Zt) content, which was significantly and positively correlated with the antioxidant enzyme activity and ΦPSII, implying that higher Zt content was responsible for the improved antioxidant status and photosynthetic performance.

Additional key words

chlorophyll fluorescence gas exchange growth hormone JIP test performance index peroxidase 

Abbreviations (biaoti)

APX

ascorbate peroxidase

CAT

catalase

Chl

chlorophyll

CK

cytokinin

DAA

days after anthesis

ETR

electron transport rate

Fi

the fluorescence at 30 ms

Fj

the fluorescence at 2 ms

Fk

the fluorescence at 300 μs

F0

the fluorescence fluorescence at 20 μs

Fm

maximal fluorescence yield of the dark-adapted state

Fm'

maximal fluorescence yield of the light-adapted state

Fs

steady-state fluorescence yield

Ft

fluorescence intensity at t time

Fv

variable fluorescence

Fv/Fm

maximal quantum yield of PSII photochemistry

FM

fresh mass

gs

stomatal conductance

MDA

malondialdehyde

NSG

non-stay-green

PIabs

performance index based on absorption of light energy

PN

net photosynthetic rate

POD

peroxidase

ROS

reactive oxygen species

SG

stay-green cultivar

SOD

superoxide dismutase

Vj

relative variable fluorescence intensity at the J-step

Wk

relative variable fluorescence for the normalization between Fo and Fk

Zt

zeatin

ΦPSII

effective quantum yield of PSII photochemistry

Ψo

probability that a trapped exaction transfers an electron into the electron transport chain beyond QA.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apel K., Hirt H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.CrossRefPubMedGoogle Scholar
  2. Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. — J. Exp. Bot. 55: 1607–1621, 2004.CrossRefPubMedGoogle Scholar
  3. Chernyaďev I.I.: The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress (review). — Appl. Biochem. Micro+ 45: 351–362, 2009.CrossRefGoogle Scholar
  4. Crowell D.N., Salaz M. S.: Inhibition of growth of cultured tobacco cells at low concentrations of lovastatin is reversed by cytokinin. — Plant Physiol. 100: 2090–2095, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  5. De Simone V., Soccio M., Borrelli G.M. et al.: Stay-green traitantioxidant status interrelationship in durum wheat (Triticum durum) flag leaf during post-flowering. — J. Plant Res. 127: 159–171, 2014.CrossRefPubMedGoogle Scholar
  6. Gan S., Amasino R.M.: Inhibition of leaf senescence by autoregulated production of cytokinin. — Science 270: 1986–1988, 1995.CrossRefPubMedGoogle Scholar
  7. Hörtensteiner S.: Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. — Trends Plant Sci. 14: 155–162, 2009.CrossRefPubMedGoogle Scholar
  8. Hu L., Wang Z., Huang B.: Growth and physiological recovery of kentucky bluegrass from drought stress as affected by a synthetic cytokinin 6-benzylaminopurine. — Crop Sci. 52: 2332–2340, 2012.CrossRefGoogle Scholar
  9. Hwang I., Sheen J.: Two-component circuitry in Arabidopsis cytokinin signal transduction. — Nature 413: 383–389, 2001.CrossRefPubMedGoogle Scholar
  10. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. — Acta. Physiol. Plant. 38: 102–113, 2016.CrossRefGoogle Scholar
  11. Khanna-Chopra R.: Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. — Protoplasma 249: 469–481, 2012.CrossRefPubMedGoogle Scholar
  12. Kim H.J., Ryu H., Hong S.H. et al.: Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. — P. Natl. Acad. Sci. USA 103: 814–819, 2006.CrossRefGoogle Scholar
  13. Klerk G.J.D., Hanecakova J., Jasik J.: The role of cytokinins in rooting of stem slices cut from apple microcuttings. — Plant Biosyst. 135: 79–84, 2001.CrossRefGoogle Scholar
  14. Kobayashi K., Suzuki M., Tang J. et al.: Lovastatin insensitive 1, a novel pentatricopeptide repeat protein, is a potential regulatory factor of isoprenoid biosynthesis in Arabidopsis. — Plant Cell Physiol. 48: 322–331, 2007.CrossRefPubMedGoogle Scholar
  15. Kusaba M., Tanaka A., Tanaka R.: Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence. — Photosynth Res. 117: 221–234, 2013.CrossRefPubMedGoogle Scholar
  16. Lim P.O., Kim H.J., Nam H.G.: Leaf senescence. — Annu. Rev. Plant Biol. 58: 83–111, 2007.CrossRefGoogle Scholar
  17. Liu X.Z., Huang B. R.: Cytokinin effects on creeping bentgrass response to heat stress. II: leaf senescence and antioxidant metabolism. — Crop Sci. 42: 466–72, 2002.CrossRefGoogle Scholar
  18. Long S.P., Zhu X.G., Naidu S.L. et al.: Can improvement in photosynthesis increase crop yields? — Plant Cell Environ. 29: 315–330, 2006.CrossRefPubMedGoogle Scholar
  19. Maxwell K., Johnson G.N.: Chlorophyll fluorescence-a practical guide. — J. Exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  20. Maxwell K.: Resistance is useful: diurnal patterns of photosynthesis in C3 and crassulacean acid metabolism epiphytic bromeliads. — Funct. Plant. Biol. 29: 679–687, 2002.CrossRefGoogle Scholar
  21. Merewitz E.B., Gianfagna T., Huang B.: Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. — J. Exp. Bot. 62: 5311–5333, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mittler R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.CrossRefPubMedGoogle Scholar
  23. Navabpour S., Morris K., Allen R. et al.: Expression of senescence enhanced genes in response to oxidative stress. — J. Exp. Bot. 54: 2285–2292, 2003.CrossRefPubMedGoogle Scholar
  24. Nishiyama Y., Allakhverdiev S. I., Murata N.: A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. — BBA-Bioenergetics 1757: 742–749, 2006.CrossRefPubMedGoogle Scholar
  25. Ogweno O.J., Hu W.H., Song X.H. et al.: Photoinhibitioninduced reduction in photosynthesis is alleviated by abscisic acid, cytokinin and brassinosteroid in detached tomato leaves. — Plant Growth Regul. 60: 175–182, 2010.CrossRefGoogle Scholar
  26. Pfannschmidt T.: Chloroplast redox signals: how photosynthesis controls its own genes. — Trends Plant Sci. 8: 33–41, 2003.CrossRefPubMedGoogle Scholar
  27. Pospíšil P.: Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. — BBABioenergetics 1817: 218–231, 2012.CrossRefGoogle Scholar
  28. Pružinská A., Tanner G., Aubry S. et al.: Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. — Plant Physiol. 139: 52–63, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rajcan I., Tollenaar M.: Source:sink ratio and leaf senescence in maize: I. Dry matter accumulation and partitioning during grain filling. — Field Crop. Res. 60: 245–253, 1999.CrossRefGoogle Scholar
  30. Rivero R.M., Gimeno J., Van Deynze A. et al.: Enhanced cytokinin synthesis in tobacco plants expressing PSARK: IPT prevents the degradation of photosynthetic protein complexes during drought. — Plant Cell Physiol. 51: 1929–1941, 2010.CrossRefPubMedGoogle Scholar
  31. Schansker G., Srivastava A., Govindjee et al.: Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. — Funct. Plant Biol. 30: 785–796, 2003.CrossRefGoogle Scholar
  32. Shiferaw B., Smale M., Braun H.J. et al.: Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. — Food Secur. 5: 291–317, 2013CrossRefGoogle Scholar
  33. Strasser B.J.: Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients. — Photosynth. Res. 52: 147–155, 1997.CrossRefGoogle Scholar
  34. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. — In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445–483. Taylor and Francis Press, London 2000.Google Scholar
  35. Thomas H., Howarth C.J.: Five ways to stay green. — J. Exp. Bot. 51: 329–337, 2000.CrossRefPubMedGoogle Scholar
  36. Thomas H., Ougham H.: The stay-green trait. — J. Exp. Bot. 65: 3889–3900, 2014.CrossRefPubMedGoogle Scholar
  37. Tjus S.E., Scheller H.V., Andersson B. et al.: Active oxygen produced during selective excitation of photosystem I is damaging not only to photosystem I, but also to photosystem II. — Plant Physiol. 125: 2007–2015, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wang K.H., Zhang X.Z., Ervin E.: Effects of nitrate and cytokinin on creeping bentgrass under supraoptimal temperatures. — J. Plant Nutr. 36: 1549–1564, 2013.CrossRefGoogle Scholar
  39. Werner T., Motyka V., Strnad M. et al.: Regulation of plant growth by cytokinin. — P. Natl. Acad. Sci. USA 98: 10487–10492, 2001.CrossRefGoogle Scholar
  40. Yaronskaya E., Vershilovskaya I., Poers Y. et al.: Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. — Planta 224: 700–709, 2006.CrossRefPubMedGoogle Scholar
  41. Zadoks J.C., Chang T.T., Konzak C F.: A decimal code for growth stages of cereals. — Weed Res. 14: 415–421, 1974.CrossRefGoogle Scholar
  42. Zavaleta-Mancera H.A., López-Delgado H., Loza-Tavera H. et al.: Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during darksenescence. — J. Plant Physiol. 164: 1572–1582, 2007.CrossRefPubMedGoogle Scholar
  43. Zhao M.R., Han Y.Y., Feng Y.N. et al.: Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. — Plant. Cell. Rep. 31: 671–685, 2012.CrossRefPubMedGoogle Scholar
  44. Zhao S.J., Shi G.A., Dong X.C.: [Experimental guide for plant physiology.]. — In: Liu X.C., Li G. (ed.): Techniques of Plant Physiological Experiment. Pp. 134–142. China Agric. Sci. Technol. Press, Beijing 2002. [In Chinese]Google Scholar
  45. Zhu X.G., Long S.P., Ort D.R.: Improving photosynthetic efficiency for greater yield. — Annu. Rev Plant Biol. 61: 235–261, 2010.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Crop BiologyShandong Agricultural UniversityTai’an, ShandongChina

Personalised recommendations