Advertisement

Photosynthetica

, Volume 56, Issue 2, pp 616–622 | Cite as

Effects of exogenous phenolic acids on photosystem functions and photosynthetic electron transport rate in strawberry leaves

  • X. F. Lu
  • H. Zhang
  • S. S. Lyu
  • G. D. DuEmail author
  • X. Q. Wang
  • C. H. Wu
  • D. G. Lyu
Original paper
  • 141 Downloads

Abstract

Our study investigated the physiological and biochemical basis for the effects of exogenous phenolic acids on the function of the photosynthetic apparatus and photosynthetic electron transport rate in strawberry seedlings. Potted seedlings of the strawberry (Fragaria × ananassa Duch.) were used. Syringic acid inhibited net photosynthetic rate and water-use efficiency decreased. Additionally, primary quinone electron acceptor of the PSII reaction centre, the PSII reaction centre and the oxygen evolving complex were also impaired. Both the maximum quantum yield of the PSII primary photochemistry and the performance index on absorption basis were depressed, resulting in reduced function of the photosynthetic electron transport chain. Otherwise, low phthalic acid concentrations enhanced photosynthetic capacity, while high concentrations showed opposite effects. Syringic acid exhibited a higher toxic effect than that of phthalic acid which was more evident at higher concentrations.

Additional key words

chlorophyll fluorescence gas exchange phenolic acid 

Abbreviations

ABS

reaction center area

Chl

chlorophyll

Ci

intercellular CO2 concentration

E

transpiration rate

ETR

electron transport rate

Fj

fluorescence yield at 2 ms

Fk

fluorescence yield at 300 μs

Fm

maximal fluorescence yield of the light-adapted state

FM

fresh mass

Fo

minimal fluorescence yield of the dark-adapted state

Fv/Fm

maximum quantum yield of PSII primary photochemistry

gs

stomatal conductance

MR/MR0

modulated reflection of PSI at 820 nm

OEC

oxygen evolving complex

PA

phthalic acid

PIABS

performance index on absorption basis

PN

net photosynthetic rate

P700

the chlorophyll a maximum absorption peak of molecules at 700 nm

RC

the energy absorbed by active reaction center

SA

syringic acid

Vk

relative variable fluorescence at 300 μs

Vj

relative variable fluorescence at the J-step

VPSI

MR/MR0 maximal slope descending

VPSI+PSII

MR/MR0 maximal slope increasing

Wk

relative variable fluorescence at the K-step

WUE

water-use efficiency (= PN/E)

Ψo

the ratio of trapped exciton electrons to other electron acceptors downstream of QA.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asaduzzaman M., Asao T.: Autotoxicity in beans and their allelochemicals. — Sci. Hortic.-Amsterdam 134: 26–31, 2012.CrossRefGoogle Scholar
  2. Asao T., Kitazawa H., Ban T.: Electrodegradation of root exudates to mitigate autotoxicity in hydroponically grown strawberry (Fragaria × ananassa Duch.) plants. — HortSci. 43: 2034–2038, 2008.Google Scholar
  3. Blum A.: Drought resistance, water-use efficiency, and yield potential: are they compatible, dissonant, or mutually exclusive? — Aust. J. Agr. Res. 56: 1159–1168, 2005.CrossRefGoogle Scholar
  4. Cao K.Q., Wang S.T.: Autotoxicity and soil sickness of strawberry (Fragaria × ananassa Duch.). — Allelopathy J. 20: 103–113, 2007.Google Scholar
  5. Einhelling F.A.: Allelopathy: Current Status and Future Goals. Pp. 1–24. Am. Chem. Soc. Press, Washington, D. C. 1995.Google Scholar
  6. Einhelling F.A., Rasmussen J.A., Schon M.K.: Effects of three phenolic acids on chlorophyll content and growth of soybean and grain sorghum seedlings. — J. Chem. Ecol. 5: 815–824, 1979.CrossRefGoogle Scholar
  7. Han C.M., Pan W.N., Wu N. et al.: Allelopathic effect of ginger on seed germination and seedling growth of soybean and chive. — Sci. Hortic.-Amsterdam 116: 330–336, 2008.CrossRefGoogle Scholar
  8. Hiradate S., Morita S., Furubayashi A. et al.: Plant growth inhibition by Cis-cinnamoyl glucosides and Cis-cinnamic acid. — J. Chem. Ecol. 31: 591–601, 2005.CrossRefPubMedGoogle Scholar
  9. Hu J.W., Zhu W.X., Xu N. et al.: [Effects of exogenous phenolic acids on growth and photosynthetic characteristics of mulberry seedlings.]. — Prat. Sci. 30: 1394–1400, 2013. [In Chinese]Google Scholar
  10. Huang X.X., Bie Z.L., Huang Y.: Identification of autotoxins in rhizosphere soils under the continuous cropping of cowpea. — Allelopathy J. 25: 383–392, 2010.Google Scholar
  11. Inderjit K.M., Duke S.O.: Ecophysiological aspects of allelopathy. — Planta 217: 529–539, 2003.CrossRefPubMedGoogle Scholar
  12. Li H.S.: [Principles and Techniques of Plant Physiology and Biochemistry Experiment.] Pp. 118–119. Higher Educ. Press, Beijing 2006. [In Chinese]Google Scholar
  13. Munekage Y., Hashimoto M., Miyake C. et al.: Cyclic electron flow around photosystem I is essential for photosynthesis. — Nature 429: 579–582, 2004.CrossRefPubMedGoogle Scholar
  14. Schansker G., Srivastava A., Govindjee et al.: Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. — Funct. Plant Biol. 30: 785–796, 2003.CrossRefGoogle Scholar
  15. Schutter M.E., Sandeno J.M., Dick R.P.: Seasonal, soil type, and alternative management influences on microbial communities of vegetable cropping systems. — Biol. Fert. Soils. 34: 397–410, 2001.CrossRefGoogle Scholar
  16. Sun H.Z., Lin C.B., Sun W.H. et al.: [Research progress of effect of light quality on crop photosynthesis.]. — J. Anhui Agri. Sci. 43: 14–16, 2015. [In Chinese]Google Scholar
  17. Tan C.H., Dai H.P., Lei J.J.: [Current situation and development trend of strawberry production and trade in the world.]. — World Agr. 3: 10–12, 2003. [In Chinese]Google Scholar
  18. Wang Y.F., Pan F.B., Zhang X.F. et al.: [Effects of phenolic acids on growth and photosynthetic characteristics of seedlings of Malus hupehensis.]. — Sci. Silvae Sin. 2: 53–59, 2015. [In Chinese]Google Scholar
  19. Yang C.M., Lee C.N., Chou C.H.: Effect of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: Inhibition of supply orientation. — Bot. Bull. Acad. Sin. 43: 299–304, 2002Google Scholar
  20. Yu J.H., Zhang Y., Niu C.X. et al.: [Effects of two kinds of allelochemicals on photosynthesis and chlorophyll fluorescence parameters of Solanum melongena L. seedlings.]. — Chin. J. Appl. Ecol. 17: 1629–1632, 2006. [In Chinese]Google Scholar
  21. Zhang K.M., Shen Y., Zhou X.Q. et al.: Photosynthetic electrontransfer reactions in the gametophyte of Pteris multifida reveal the presence of allelopathic interference from the invasive plant species Bidens pilosa. — J. Photoch. Photobio. B. 158: 81–88, 2016.CrossRefGoogle Scholar
  22. Zhang Z.S., Jia Y.J., Gao H.Y. et al.: Characterization of PSI recovery after chilling. — induced photoinhibition in cucumber (Cucumis sativus L.) leaves. — Planta 234: 883–889, 2011.CrossRefPubMedGoogle Scholar
  23. Zhen W.C.: [Study on the mechanism and control measures of strawberry replant disease]. — J. Hebei Agr. Univ., Baoding, 003. [In Chinese]Google Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • X. F. Lu
    • 1
  • H. Zhang
    • 1
  • S. S. Lyu
    • 1
  • G. D. Du
    • 1
    • 2
    Email author
  • X. Q. Wang
    • 1
    • 2
  • C. H. Wu
    • 1
  • D. G. Lyu
    • 1
    • 2
  1. 1.College of HorticultureShenyang Agricultural UniversityShenyang, Liaoning ProvinceChina
  2. 2.Research Laboratory for Breeding and Physiology-Ecology of Northern Fruit Tree, Shenyang Agricultural UniversityLiaoning ProvinceShenyangChina

Personalised recommendations