Advertisement

Photosynthetica

, Volume 55, Issue 3, pp 467–477 | Cite as

Effects of light quality on growth and development, photosynthetic characteristics and content of carbohydrates in tobacco (Nicotiana tabacum L.) plants

  • L. Y. Yang
  • L. T. Wang
  • J. H. Ma
  • E. D. Ma
  • J. Y. Li
  • M. Gong
Original Paper

Abstract

In this study, effects of yellow (Y), purple (P), red (R), blue (B), green (G), and white (W) light on growth and development of tobacco plants were evaluated. We showed that monochromatic light reduced the growth, net photosynthetic rate (P N), stomatal conductance, intercellular CO2, and transpiration rate of tobacco. Such a reduction in P N occurred probably due to the stomatal limitation contrary to plants grown under W. Photochemical quenching coefficient (qP), maximal fluorescence of dark-adapted state, effective quantum yield of PSII photochemistry (ΦPSII), and maximal quantum yield of PSII photochemistry (Fv/Fm) of plants decreased under all monochromatic illuminations. The decline in ΦPSII occurred mostly due to the reduction in qP. The increase in minimal fluorescence of dark-adapted state and the decrease in Fv/Fm indicated the damage or inactivation of the reaction center of PSII under monochromatic light. Plants under Y and G showed the maximal nonphotochemical quenching with minimum P N compared with the W plants. Morphogenesis of plants was also affected by light quality. Under B light, plants exhibited smaller angles between stem and petiole, and the whole plants showed a compact type, while the angles increased under Y, P, R, and G and the plants were of an unconsolidated style. The total soluble sugar content increased significantly under B. The reducing sugar content increased under B but decreased significantly under R and G compared with W. In conclusion, different monochromatic light quality inhibited plants growth by reducing the activity of photosynthetic apparatus in plants. R and B light were more effective to drive photosynthesis and promote the plant growth, while Y and G light showed an suppression effect on plants growth. LEDs could be used as optimal light resources for plant cultivation in a greenhouse.

Additional key words

chlorophyll fluorescence morphogenesis 

Abbreviations

B

blue light

Car

carotenoids

Chl

chlorophyll

Ci

intercellular CO2 concentration

DAE

days of exposure

DM

dry mass

E

transpiration rate

F0

minimal fluorescence of dark-adapted state

Fm

maximum fluorescence of dark-adapted state

Fv/Fm

maximum quantum yield of PSII photochemistry

FM

fresh mass

G

green light

gs

stomatal conductance

LED

light-emitting diodes

NPQ

nonphotochemical quenching

P

purple light

PN

net photosynthetic rate

qP

photochemical quenching coefficient

R

red light

W

white light

Y

yellow light

ΦPSII

quantum efficiency of PSII

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by following grants from the National Natural Science Foundation of China (No. 31260064, 31460059), and the key special project of science and technology (110201101003 TS03), State Tobacco Monopoly Bureau, China.

References

  1. Aasamaa K., Aphalo P.J.: Effect of vegetational shade and its components on stomatal responses to red, blue and green light in two deciduous tree species with different shade tolerance.–Environ. Exp. Bot. 121: 94–101, 2016.CrossRefGoogle Scholar
  2. Allen D.J., Ort D.R.: Impacts of chilling temperatures on photosynthesis in warm-climate plants.–Trends Plant Sci. 6: 36–42, 2001.CrossRefPubMedGoogle Scholar
  3. Andersen R., Kasperbauer M.J.: Chemical composition of tobacco leaves altered by near ultraviolet and intensity of visible light.–Plant Physiol. 51: 723–726, 1973.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Azari R., Tadmor Y., Meir A. et al.: Light signaling genes and their manipulation towards modulation of phytonutrient content in tomato fruits.–Biotechnol. Adv. 28: 108–118, 2010.CrossRefPubMedGoogle Scholar
  5. Badger M.R., von Caemmerer S., Ruuska S., Nakano H.: Electron flow to oxygen in higher plants and algae rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase.–Philos. T. Roy Soc. B 355: 1433–1445, 2000.CrossRefGoogle Scholar
  6. Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production stategies: an examination of future possibilities.–J. Exp. Bot. 55: 1607–1621, 2004.CrossRefPubMedGoogle Scholar
  7. Barrero J.M., Jacobsen J.V., Talbot M.J. et al.: Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon.–New Phytol. 193: 376–386, 2012.CrossRefPubMedGoogle Scholar
  8. Briggs W.R., Christie J.M.: Phototropins 1 and 2: versatile plant blue-light receptors.–Trends Plant Sci. 7: 204–210, 2002.CrossRefPubMedGoogle Scholar
  9. Brown C.S., Schuerger A.C., Sager J.C.: Growth and photomorphogensis of paper plants under red light-emitting diodes with supplemental blue or far-red lighting.–J. Am. Soc. Hortic. Sci. 120: 808–813, 1995.PubMedGoogle Scholar
  10. Buysee J., Merckx R.: An improved colorimetric method to quantify sugar content of plant tissue.–J. Exp. Bot. 44: 1627–1629, 1993.CrossRefGoogle Scholar
  11. Dere S., Günes T., Sivaci, R.: Spectrophotometric determination of chlorophyll-a, b and total cartenoid of some algae species using different solvents.–Turk. J. Bot. 22: 13–17, 1998.Google Scholar
  12. Cope K.R., Bugbee B.: Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light.–HortScience 48: 504–509, 2013.Google Scholar
  13. Demming-Adams B., Winter K., Krüger A. et al.: Zeaxanthin synthesis, energy dissipation, and photoprotection of PSII at chilling temperature.–Plant Physiol. 90: 894–898, 1989.CrossRefGoogle Scholar
  14. Dougher T.A.O., Bugbee B.: Evidence for yellow light suppression of lettuce growth.–Photochem Photobiol. 73: 208–212, 2001.CrossRefPubMedGoogle Scholar
  15. Frankauser C., Chorry J.: Light control of plant development.–Annu. Rev. Cell. Dev. Bi. 13: 203–229, 1997.CrossRefGoogle Scholar
  16. Franklin K.A.: Shade avoidnace.–New Phytol. 179: 930–944, 2008.CrossRefPubMedGoogle Scholar
  17. Franklin K.A.: Light and temperature signal crosstalk in plant development.–Curr. Opin. Plant Biol. 12: 63–68, 2009.CrossRefPubMedGoogle Scholar
  18. Folta K.M., Maruhnich S.A.: Green light: a singnal to slow down or stop.–J. Exp. Bot. 58: 3099–3111, 2007.CrossRefPubMedGoogle Scholar
  19. Folta K.M., Childers K.S.: Light as a growth regulator: controlling plant biology with narrow-bandth solid-state lighting systems.–HortScience 43: 1957–1964, 2008.Google Scholar
  20. Goins G.D., Yorio N.C., Sanwo M.M. et al.: Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodeds (LED) with and without supplemental blue light.–J. Exp. Bot. 48: 1407–1413, 1997.CrossRefPubMedGoogle Scholar
  21. Heo J.W., Shin K.S., Kim S.K. et al.: Light quality affects in vitro growth of grape ‘Teleki 5BB’.–J. Plant Biol. 49: 276–280, 2006.CrossRefGoogle Scholar
  22. Hogewoning S.W., Trouwborst G., Maljaars H. et al.: Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combination of red and blue light.–J. Exp. Bot. 61: 3107–3117, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Iacona C., Muleo R.: Light quality affects in vitro adventitious rooting and ex vitro performance of cherry rootstock Colt.–Sci. Hortic.-Amsterdam 125: 630–636, 2007.CrossRefGoogle Scholar
  24. Jensen P.E., Bassi R., Boekema Ej. et al.: Structure, function and regulation of plant photosystem I.–BBA-Bioengertics 1767: 335–352, 2007.CrossRefGoogle Scholar
  25. Johkan M., Shoji K., Goto F. et al.: Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce.–HortScience 45: 1809–1814, 2010.Google Scholar
  26. Kasperbauer M.J.: Spetral distribution of light in tobacco canopy and effects of end-of-day light quality on growth and development.–Plant Physiol. 47: 775–778, 1971.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kasperbauer M.J., Peaslee D.E.: Morphology and photosynthetic efficiency of tobacco leaves that recevied end-of-day red or far red light during development.–Plant Physiol. 52: 440–442, 1973.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ke X., Li J.Y., Gong M. et al.: [Effects of different light quality on growth and photosynthesis of tobacco (Nicotiana tabacum L.) leaves.]–Plant Physiol. J. 47: 512–520, 2011. [In Chinese]Google Scholar
  29. Ke X., Xu C.H., Gong M. et al.: [Effects of different light quality on anatomical structure, carboxylase activity of ribulose 1, 5-bisphosphate carboxylase oxygenase and expression of rbc and rca genes in tobacco (Nicotiana tabacum L.) leaves].–Plant Physiol. J. 48: 251–259, 2012. [In Chinese]Google Scholar
  30. Kim H.H.: Green light supplementation for enhance lettuce growth under red and blue light-emitting diodes.–HortScience 39: 1617–1622, 2004.PubMedGoogle Scholar
  31. Kim S.J., Hahn E.J., Heo J.W. et al.: Effects of LEDs on net photsynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro.–Sci. Hortic.-Amsterdam 101: 143–151, 2004.CrossRefGoogle Scholar
  32. Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics.–Annu. Rev. Plant Phys. 43: 313–349, 1991.CrossRefGoogle Scholar
  33. Lee S.H., Tewari R.K., Hahn E.J. et al.: Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania Somnifera (L.) Dunal. plantlets.–Plant Cell Tiss. Org. 90: 141–151, 2007.CrossRefGoogle Scholar
  34. Lefebvre S., Lawson T., Fryer M. et al.: Increased sedoheptulose-1, 7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development.–Plant Physiol. 138: 4514–4560, 2005.CrossRefGoogle Scholar
  35. Leong T.Y., Anderson J.M.: Adaptation of the thylakoid membranes of pea chloroplasts to light intensity. 1. Study on distribution of chlorophyll-protein complexes.–Photosynth. Res. 5: 105–115, 1984.CrossRefPubMedGoogle Scholar
  36. Li H.M., Xu Z.G., Tang C.M.: Effects of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) Plantlets in vitro.–Plant Cell Tiss. Org. 103: 155–163, 2010.CrossRefGoogle Scholar
  37. Li Q., Kubota C.: Effects of supplemental light quality on growth and phytochemical of baby lettuce.–Environ. Exp. Bot. 67: 59–64, 2009.CrossRefGoogle Scholar
  38. Lin K.H., Huang M.Y., Huang W.D. et al.: The effects of red, blue, and white light emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L.var. capitata).–Sci. Hortic.-Amsterdam 150: 86–91, 2013.CrossRefGoogle Scholar
  39. Liu M.X., Xu Z.G., Guo S.R. et al.: Evaluation of leaf morphology, structure and biochemical substance of ballon flower (platycodon grandiflorum (Jacq.) A. DC.) plantlets in vitro under different light spectra.–Sci. Hortic.-Amsterdam 174: 112–118, 2014.CrossRefGoogle Scholar
  40. Liu X.Y., Guo S.R., Xu Z.G. et al.: Regulation of chloroplast ultrastructure, cross-section anatomy of leaves, and morphology of stomata of cherry tomato by light-emitting diodes.–HortScience 46: 217–221, 2011.Google Scholar
  41. Matsuda R., Ohashi-Kaneko K., Fujiwara K. et al.: Effects of blue deficiency on acclimation of light energy partitioning on PSII and CO2 assimilation capacity to high irradiance in spinach leaves.–Plant Cell Physiol. 49: 664–670, 2008.CrossRefPubMedGoogle Scholar
  42. Maxwell K., Johnson G.N.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.PubMedGoogle Scholar
  43. McMahon M.J., Kelly J.W., Decoteau D.R. et al.: Growth of Dendranthema x grandiflorum (Ramat.) Kitamura under various spectral filter.–J. Am. Soc. Hortic. Sci. 116: 950–954, 1991.Google Scholar
  44. Miyake C., Amako K., Shiraishi N. et al.: Acclimation of tobacco leaves to high intensity drives the plastoquinone oxidation system-relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark.–Plant Cell Physiol. 50: 730–743, 2009.CrossRefPubMedGoogle Scholar
  45. Murtas G., Millar A.: How plants tell the time.–Curr. Opin. Plant Biol. 3: 43–46, 2000.CrossRefPubMedGoogle Scholar
  46. Neff M.M., Fankhauser C., Chory J.: Light: an indicator of time and place.–Genes Dev. 14: 257–271, 2000.PubMedGoogle Scholar
  47. Paul M.J., Pellny T.K.: Carbon metabolite feedback regulation of leaf photosynthesis and development.–J. Exp. Bot. 54: 539–547, 2003.CrossRefPubMedGoogle Scholar
  48. Pfannschmidt A., Nilsson A., Allen J.F.: Photosynthetic control of chloroplast gene expression.–Nature 397: 625–668, 1999.CrossRefGoogle Scholar
  49. Pfündel E., Baake E.: A quantitative description of fluorescence exciation spectra in intact bean leaves greened under intermittent light.–Photosynth. Res. 26: 19–28, 1990.PubMedGoogle Scholar
  50. Poudel P.R., Kataoka I., Mochioka R.: Effects of red-and bluelight-emitting diodes on growth and morphogenesis of grapes.–Plant Cell Tiss. Org. 92: 147–153, 2008.CrossRefGoogle Scholar
  51. Sakai T., Kagawa T., Kasahara M. et al.: Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and choroplast relocation.–P. Natl. Acad. Sci. USA 32: 161–172, 2001.Google Scholar
  52. Schuerger A.C., Brown C.S., Stryjewski E.C.: Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodeds supplemented with blue or far red light.–Ann. Bot-London. 79: 273–282, 1997.CrossRefGoogle Scholar
  53. Schnettger B.C., Critchley C., Santore U.J. et al.: Relationship between photoinhibition of photosynthesis, D1 protein turnover and chloroplast structure: effects of protein synthesis.–Plant Cell Environ. 17: 55–64, 1994.CrossRefGoogle Scholar
  54. Seibert M., Wetherbee P.J., Job D.D.: The effects of light intensity and spectral quality on growth and shoot inititation in tobacco callus.–Plant Physiol. 56: 130–139, 1975.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Shin K.S., Murthy H.N., Heo J.W. et al.: Induction of betalain pigmentation in hairy roots of red beet under different radiation sources.–Biol. Plantarum 47: 149–152, 2003.CrossRefGoogle Scholar
  56. Shin K.S., Murthy H.N., Heo J.W. et al.: The effect of light 477 quality on growth and development of in vitro cultured Doritaenopsis plants.–Acta Physiol. Plant. 30: 339–343, 2008.CrossRefGoogle Scholar
  57. Su N.N., Wu Q., Shen Z.G. et al.: Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings.–Plant Growth Regul. 73: 227–235, 2014.CrossRefGoogle Scholar
  58. Sun W., Ubierna N., Ma J.Y. et al.: The coordination of C4 mechanism in maize and Miscanthus x giganteus in response to transient changes in light quality.–Plant Physiol. 164: 1283–1292, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tennessen D.J., Singsaas E.L., Sharkey T.D.: Light-emitting diodes as a light source for photosynthesis research.–Photosynth. Res. 39: 85–92, 1994.CrossRefPubMedGoogle Scholar
  60. van Kooten O., Snel J.F.: The use of chlorophyll fluorescence nomencalture in plant stress physiology.–Photosynth. Res. 25: 147–150, 1990.CrossRefPubMedGoogle Scholar
  61. Wang H., Gu M., Cui J. et al.: Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus.–J. Photoch. Photobio. B 96: 30–37, 2009.CrossRefGoogle Scholar
  62. Wang H., Jiang Y.P., Yu H.Y. et al.: Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants.–Eur. J. Plant Pathol. 127: 125–135, 2010.CrossRefGoogle Scholar
  63. Wen J.F., Ke X., Gong M. et al.: [Effects of light quality on antioxidant defense system during growth and development of tobacco leaves.]–Acta Bot. Boreal.-Occident. Sin. 31: 1799–1804, 2011. [In Chinese]Google Scholar
  64. Wu M.C., Hou C.Y., Jiang C.M. et al.: A novel approach of LED light radiation improves the antioxidant of pea seedlings.–Food Chem. 101: 1753–1758, 2007.CrossRefGoogle Scholar
  65. Xu C.H., Li J.Y., Gong M. et al.: [Effects of supplemental lighting on growth and photosynthesis of tobacco leaves.]–Acta Bot. Boreal. -Occident. Sin. 33: 1–8, 2013. [In Chinese]Google Scholar
  66. Yeh N., Chung J.P.: High-brightness LEDs–Energy efficient lighting and their potential in indoor plant cultivation.–Renew. Sust. Energ. Rev. 13: 2175–2180, 2009.CrossRefGoogle Scholar
  67. Yorio N.C., Goins G.D., Kagie H.R.: Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation.–HortScience 36: 380–383, 2001.PubMedGoogle Scholar
  68. Yu H., Ong B.L.: Efects of radiation quality on growth and photosynthesis of Acacia mangium seedlings.–Photosynthetica 41: 349–355, 2003.CrossRefGoogle Scholar
  69. Zhao J., Ke X., Xu C.H. et al.: Effects of different light qualities on activity and gene expression of caspase-like proteases in tobacco leaves.–Agri. Sci. Technol.-Hunan 13: 276–279, 2012.Google Scholar
  70. Wen J.F., Ke X., Gong M. et al.: [Effects of light quality on antioxidant defense system during growth and development of tobacco leaves.]–Acta Bot. Boreal.-Occident. Sin. 31: 1799–1804, 2011. [In Chinese]Google Scholar
  71. Xu C.H., Li J.Y., Gong M. et al.: [Effects of supplemental lighting on growth and photosynthesis of tobacco leaves.]–Acta Bot. Boreal. -Occident. Sin. 33: 01–08, 2013. [In Chinese]Google Scholar
  72. Yeh N., Chung J.P.: High-brightness LEDs–Energy efficient lighting and their potential in indoor plant cultivation.–Renew. Sust. Energ Rev. 13: 2175–2180, 2009.CrossRefGoogle Scholar
  73. Yu H., Ong B.L.: Efeects ofradiation quality on growth and photosynthesis of Acacia mangium seedlings.–Photosynthetica 41: 349–355, 2003.CrossRefGoogle Scholar
  74. Zhao J., Ke X., Gong M. et al.: Effects of different light qualities on activity and gene expression of caspase-like proteases in tobacco leaves.–J. Agr. Sci. Tech-Iran 13: 276–279, 2012.Google Scholar

Copyright information

© The Institute of Experimental Botany 2017

Authors and Affiliations

  • L. Y. Yang
    • 1
  • L. T. Wang
    • 1
  • J. H. Ma
    • 2
  • E. D. Ma
    • 2
  • J. Y. Li
    • 2
  • M. Gong
    • 1
  1. 1.School of Life Sciences, Yunnan Normal University, Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyMinistry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan ProvinceKunming Cheng gongChina
  2. 2.Yunnan Academy of Tobacco Agricultural SciencesYu xi, YunnanChina

Personalised recommendations