, Volume 55, Issue 4, pp 579–587

Photosynthesis of soybean cultivars released in different decades after grafting onto record-yield cultivars as rootstocks

  • S. Y. Li
  • F. Teng
  • D. M. Rao
  • H. J. Zhang
  • H. Y. Wang
  • X. D. Yao
  • C. M. Yu
  • C. H. Li
  • M. Z. Zhao
  • S. K. St. Martin
  • F. T. Xie
Original papers


While photosynthesis of soybean has been enhanced by breeding, it remains to be clarified whether the improvement of root function could bring a further increase of photosynthetic capacity for the development of soybean cultivars. The objective of this grafting experiment was to determine the influence of record-yield soybean cultivars, Liaodou14 (L14) and Zhonghuang35 (Z35), as rootstocks on photosynthetic traits of cultivars released in different decades. Grafting of various soybean cultivars onto L14 or Z35 rootstocks showed a higher root physiological activity, which resulted in significant increases in some photosynthetic traits at the late grain-filling stage compared with the non-grafted and self-grafted plants. The genetic gain for some photosynthetic traits of cultivars released from 1966 to 2006 increased by using L14 and Z35 as rootstocks. It suggested that the photosynthetic traits of the recently released cultivars could increase more if their root functions are improved.

Additional key words

chlorophyll fluorescence gas exchange Rubisco 



non-grafted and self-grafted cultivars released in different decades


the cultivars released in different decades grafted onto Liaodou14 rootstocks


the cultivars released in different decades grafted onto record-yield cultivars rootstocks


the cultivars released in different decades grafted onto Zhonghuang35 rootstocks


transpiration rate


electron transport rate


early grain-filling stage


fresh mass


flowering stage


stomatal conductance


late grain-filling stage


net photosynthetic rate


photochemical quenching coefficient


beginning of flowering stage


beginning of seed stage


actual photochemical efficiency of PSII


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ainsworth E.A., Yendrek C.R., Skoneczka J.A. et al.: Accelerating yield potential in soybean: potential targets for biotechnological improvement. — Plant Cell Environ. 35: 38–52, 2012.CrossRefPubMedGoogle Scholar
  2. Boerma H.R., Ashley D.A.: Canopy photosynthesis and seed-fill duration in recently developed soybean cultivars and selected plant introductions. — Crop Sci. 28: 137–140, 1988.CrossRefGoogle Scholar
  3. Cardwell V.B., Poison D.E.: Response or ‘Chippewa 64’ soybean scions to roots of different genotypes. — Crop Sci. 12: 217–219, 1972.CrossRefGoogle Scholar
  4. Cui X., Dong Y., Gi P. et al.: Relationship between root vigour, photosynthesis and biomass in soybean cultivars during 87 years of genetic improvement in the northern China. — Photosynthetica 54: 81–86, 2016.CrossRefGoogle Scholar
  5. Cui Z.L., Carter T.E., Burton J.W.: Genetic base of 651 Chinese soybean cultivars released during 1923 to 1995. — Crop Sci. 40: 1470–1481, 2002.CrossRefGoogle Scholar
  6. Garrison F.R., Brinker A.M., Noodén L.D.: Relative activities of xylem-supplied cytokinins in retarding soybean leaf senescence and sustaining pod development. — Plant Cell Physiol. 25: 213–224, 1984.Google Scholar
  7. Gizlice Z., Carter T.E., Burton J.W.: Genetic base for North American public soybean cultivars released between 1947 and 1988. — Crop Sci. 34: 1143–1151, 1994.CrossRefGoogle Scholar
  8. Jin J., Liu X.B., Wang G.H. et al.: Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China. — Field Crop. Res. 115: 116–123, 2010.CrossRefGoogle Scholar
  9. Jin X., Wang L.: Case studies of super yield in the soybean variety Tszhun Khuan 35. — Selekt. Nasinnitstvo 106: 148–154, 2014.Google Scholar
  10. Keep N.R., Schapaugh W.T., Prasad P.V.V. et al.: Changes in physiological traits in soybean with breeding advancements. — Crop Sci. 56: 122–131, 2016.CrossRefGoogle Scholar
  11. Koester R.P., Skoneczka J.A., Cary T.R. et al.: Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. — J. Exp. Bot. 65: 3311–3321, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Koester R.P., Nohl B.M., Diers B.W. et al.: Has photosynthetic capacity increased with 80 years of soybean breeding? An examination of historical soybean cultivars. — Plant Cell Environ. 39: 1058–1067, 2016.CrossRefPubMedGoogle Scholar
  13. Liu G., Yang C., Xu K. et al.: Development of yield and some photosynthetic characteristics during 82 years of genetic improvement of soybean genotypes in northeast China. — Aust. J. Crop Sci. 6: 1416–1422, 2012.Google Scholar
  14. Livak K.J., Schmittgen T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. — Methods 25: 402–408, 2001.CrossRefPubMedGoogle Scholar
  15. Morrison M.J., Voldeng H.D., Cober E.R.: Physiological changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. — Agron. J. 91: 685–689, 1999.CrossRefGoogle Scholar
  16. Ookawa T., Nishiyama M., Takahiro J. et al.: Analysis of the factors causing differences in the leaf-senescence pattern between two soybean cultivars, Enrei and Tachinagaha. — Plant Prod. Sci. 4: 3–8, 2001.CrossRefGoogle Scholar
  17. Pantalone V.R., Rebetzke G.J., Burton J.W. et al.: Soybean PI 416937 root system contributes to biomass accumulation in reciprocal grafts. — Agron. J. 91: 840–844, 1999.CrossRefGoogle Scholar
  18. Peoples M.B., Faizah A.W., Rerkasem B. et al.: Methods for Evaluating Nitrogen Fixation by Nodulated Legumes in the Field. Pp. 76. ACIAR, Canberra 1989.Google Scholar
  19. Rincker K., Nelson R., Specht J. et al.: Genetic improvement of US soybean in maturity groups II, III, and IV. — Crop Sci. 54: 1419–1432, 2014.Google Scholar
  20. Rowntree S.C., Suhre J.J., Weidenbenner N.H. et al.: Genetic gain × management interactions in soybean: I. Planting date. — Crop Sci. 53: 1128–1138, 2013.CrossRefGoogle Scholar
  21. Rowntree S.C., Suhre J.J., Weidenbenner N.H. et al.: Physiological and phenological responses of historical soybean cultivar releases to earlier planting. — Crop Sci. 54: 804–816, 2014.CrossRefGoogle Scholar
  22. Somerville C., Briscoe J.: Genetic engineering and water. — Science 292: 2217, 2001.CrossRefPubMedGoogle Scholar
  23. Song S.H., Wang W.B., Lu G.L. et al.: [Research on technology for super high yielding in spring soybean.]. — Chin. J. Oil Crop Sci. 23: 48–50, 2001. [In Chinese]Google Scholar
  24. Suhre J.J., Weidenbenner N.H., Rowntree S.C. et al.: Soybean yield partitioning changes revealed by genetic gain and seeding rate interactions. — Agron. J. 106: 1631–1642, 2014.CrossRefGoogle Scholar
  25. Sulpice R., Tschoep H., von Korff M. et al.: Description and applications of a rapid and sensitive non-radioactive microplate-based assay for maximum and initial activity of Dribulose- 1, 5-bisphosphatecarboxylase/oxygenase. — Plant Cell Environ. 30: 1163–1175, 2007.CrossRefPubMedGoogle Scholar
  26. Takei K., Takahashi T., Sugiyama T. et al.: Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. — J. Exp. Bot. 53: 971–977, 2002.CrossRefPubMedGoogle Scholar
  27. Wang X.K., Zhang W.H., Hao Z.B. et al.: [Principles and Techniques of Plant Physiological Biochemical Experiment.] Pp. 118–119. Higher Education Press, Beijing 2006. [In Chinese]Google Scholar
  28. Wells R., Schulze L.L., Ashley D.A. et al.: Cultivars differences in canopy apparent photosynthesis and their relationship to seed yield in soybeans. — Crop Sci. 22: 886–890, 1982.CrossRefGoogle Scholar
  29. Wilson E.W., Rowntree S.C., Suhre J.J. et al.: Genetic gain × management interactions in soybean: II. nitrogen utilization. — Crop Sci. 54: 340–348, 2014.CrossRefGoogle Scholar
  30. Xie F.T., Zhang H.J., Wang H.Y. et al.: Effect of preplant fertilizer on agronomic and physiological traits of soybean cultivars from different breeding programs. — Agr. Sci. China 9: 1602–1611, 2010.CrossRefGoogle Scholar
  31. Yin Z.T., Meng F.F., Song H.N. et al.: Expression quantitative trait loci analysis of two genes encoding Rubisco activase in soybean. — Plant Physiol. 152: 1625–1637, 2010.CrossRefPubMedGoogle Scholar
  32. Zhang X., Huang G., Bian X. et al.: Effects of root interaction and nitrogen fertilization on the chlorophyll content, root activity, photosynthetic characteristics of intercropped soybean and microbial quantity in the rhizosphere. — Plant Soil Environ. 59: 80–88, 2013a.Google Scholar
  33. Zhang X.X., Zhang H.J., Song S.H. et al.: [Comparison on root activity and nodulation characteristics of super-high-yielding soybeans.]. — Soybean Sci. 32: 496–500, 2013b. [In Chinese]Google Scholar

Copyright information

© The Institute of Experimental Botany 2017

Authors and Affiliations

  • S. Y. Li
    • 1
  • F. Teng
    • 1
  • D. M. Rao
    • 1
  • H. J. Zhang
    • 1
  • H. Y. Wang
    • 1
  • X. D. Yao
    • 1
  • C. M. Yu
    • 1
  • C. H. Li
    • 1
  • M. Z. Zhao
    • 1
  • S. K. St. Martin
    • 2
  • F. T. Xie
    • 1
  1. 1.Soybean Research InstituteShenyang Agricultural UniversityShenyang, Liaoning ProvinceP. R. China
  2. 2.Department of Horticulture and Crop ScienceOhio State UniversityColumbusUSA

Personalised recommendations