Photosynthetica

, Volume 55, Issue 3, pp 434–442 | Cite as

Morphological recognition with the addition of multi-band fluorescence excitation of chlorophylls of phytoplankton

  • M. Lauffer
  • F. Genty
  • S. Margueron
  • J. L. Collette
Original Paper

Abstract

The recognition of aquatic organisms plays a crucial role in the monitoring of the pollution and for the adoption of rapid preventive actions. A compact microscopic optical imaging system is proposed in order to acquire and treat the multibands fluorescence of several pigments in phytoplankton organisms. Two algorithms for automatic recognition of phytoplankton were proposed with a minimum number of calibration parameters. The first algorithm provides a morphological recognition based on “watershed” segmentation and Fourier descriptors, while the second one builds fluorescence pigment images by “k-means” partition of intensity ratios. The operation of these algorithms was illustrated by the study of two different organisms: a cyanobacteria (Dolichospermum sp.) and an alga (Cladophora sp.). The family and the genus of these organisms were then classified into a database which is independent of the size, the orientation and the position of the specimens in the images.

Additional key words

aquatic organism fluorescence imaging morphological extraction pigment 

Abbreviations

CCD

charge coupled device

Chl

chlorophyll

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batoréu M.C.C., Dias E., Pereira P. et al.: Risk of human exposure to paralytic toxins of algal origin.–Environ. Toxicol. Phar. 19: 401–406, 2005.CrossRefGoogle Scholar
  2. Bro E., Meyer S., Genty B.: Heterogeneity of leaf CO2 assimilation during photosynthetic induction.–Plant Cell Environ. 19: 1349–1358, 1996.CrossRefGoogle Scholar
  3. Chaerle L., Leinonen I., Jones H.G. et al.: Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging.–J. Exp. Bot. 58: 773–784, 2007.CrossRefPubMedGoogle Scholar
  4. Chen M., Blankenship R.E.: Expanding the solar spectrum used by photosynthesis.–Trend. Plant Sci. 16: 427–431, 2011.CrossRefGoogle Scholar
  5. Chen X.: Skin lesion segmentation by an adaptive watershed flooding approach.–PhD Dissertation, Univ. Missouri-Rolla, 2007Google Scholar
  6. Codd G.A., Lindsay J., Young J.M. et al.: Harmful Cyanobacteria.–In: Huisman J., Matthijs H.C.P., Visser P.M. (ed.): Harmful Cyanobacteria. Pp. 1–23. Springer, Dordrecht 2005.CrossRefGoogle Scholar
  7. Falco W.F., Botero E.R., Falcão E.A. et al.: In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles.–J. Photoch. Photobio. A 225: 65–71, 2011.CrossRefGoogle Scholar
  8. Falconer I. R., Humpage A. R.: Health risk assessment of Cyanobacterial (blue-green algal) toxins in drinking water.–Ini. J. Env. Res. Pub. He. 2: 43–50, 2005.CrossRefGoogle Scholar
  9. French C.S., Young V.K.: The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll.–J. Gen. Physiol. 35: 873–890, 1952.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gons H. J., Hakvoort H., Peters S. W. M. et al.: Optical detection of Cyanobacterial blooms.–In: Huisman J., Matthijs H.C.P., Visser P.M. (ed.): Harmful Cyanobacteria. Pp. 177–200. Springer, Dordrecht 2005.CrossRefGoogle Scholar
  11. Govindjee Shevela D.: Adventures with Cyanobacteria: a personal perspective.–Front. Plant Sci. 2: 1–17, 2011.Google Scholar
  12. Guidi L., Degl’Innocenti E.: Imaging of chl a fluorescence: a tool to study abiotic stress in plants.–In: Shanker A., Venkateswarlu B. (ed.): Abiotic Stress in Plants–Mechanisms and Adaptations. Pp. 3–20. In Tech, 2011.Google Scholar
  13. Hall E. L.: Computer Image Processing and Recognition. Pp. 585. Academic Press, New York 1979.Google Scholar
  14. Hudnell H. K.: Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs: State of the Science and Research Needs. Pp. 2–15. Springer Sci. Business Media, New York 2008.Google Scholar
  15. Komárek J., Anagnostidis K.: [Freshwater Flora of Central Europe: Chroococcales.] Pp. 548. Gustav Fischer Verlag, Stuttgart 2000 [In German]Google Scholar
  16. Kühl M., Chen M., Ralph P.J. et al.: Ecology: a niche for Cyanobacteria containing chlorophyll d.–Nature 433: 820–820, 2005.CrossRefPubMedGoogle Scholar
  17. Kutser T., Vahtmäe E., Martin G.: Assessing suitability of multispectral satellites for mapping benthic macroalgal cover in turbid coastal waters by means of model simulations.–Estuar. Coast. Shelf S. 67: 521–529, 2006.CrossRefGoogle Scholar
  18. Lichtenthaler H.K., Langsdorf G., Lenk S. et al.: Chlorophyll fluorescence imaging of photosynthetic activity with the flashlamp fluorescence imaging system.–Photosynthetica 43: 355–369, 2005.CrossRefGoogle Scholar
  19. Lichtenthaler H.K., Babani F., Langsdorf G.: Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees.–Photosynth. Res. 93: 235–244, 2007.CrossRefPubMedGoogle Scholar
  20. McConnell M.D., Koop R., Vasil’ev S. et al.: Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in Cyanobacteria.–A structure-based model for the light state transition.–Plant Physiol. 130: 1201–1212, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Metcalf J.S., Richer R., Cox P.A. et al.: Cyanotoxins in desert environments may present a risk to human health.–Sci. Total Environ. 421: 118–123, 2012.CrossRefPubMedGoogle Scholar
  22. Poryvkina L., Babichenko S., Leeben A.: Analysis of phytoplankton pigments by excitation spectra of fluorescence.–EARSeL eProceedings 1: 224–232 2000.Google Scholar
  23. Quiblier C., Wood S., Echenique-Subiabre I. et al.: A review of current knowledge on toxic benthic freshwater Cyanobacteria–Ecology, toxin production and risk management.–Water Res. 47: 5464–5479, 2013.CrossRefGoogle Scholar
  24. Rabinowitch E., Govindjee U.: Photosynthesis. Pp. 102–123. John Wiley & Sons, New York 2013.Google Scholar
  25. Richardson T.L., Lawrenz E., Pinckney J.L. et al.: Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser®.–Water Res. 44: 2461–2472, 2010.CrossRefPubMedGoogle Scholar
  26. See J.H., Campbell L., Richardson T.L. et al.: Combining new technologies for determination of phytoplankton community structure in the Northern Gulf of Mexico.–J. Phycol. 41: 305–310, 2005.CrossRefGoogle Scholar
  27. Seppälä J., Ylöstalo P., Kaitala S. et al.: Ship-of-opportunity based phycocyanin fluorescence monitoring of the filamentous Cyanobacteria bloom dynamics in the Baltic Sea.–Estuar. Coast. Shelf S. 73: 489–500, 2007.CrossRefGoogle Scholar
  28. Seppälä J., Babichenko S., Leeben A. et al.: Fluorescence diagnostics of phytoplankton bloom in Baltic, Institute of Ecology, Tallinn Estonia.–In: Proceedings of the Six International Conference on Remote Sensing for Marine and Coastal Environments. Pp. 377–383. Environmental Research Institute of Michigan, Ann Arbor 2000.Google Scholar
  29. Shedbalkar V.P., Rebeiz C.A.: Chloroplast biogenesis: Determination of the molar extinction coefficients of divinyl chl a and b and their pheophytins.–Anal. Biochem. 207: 261–266, 1992.CrossRefPubMedGoogle Scholar
  30. Stamatakis K., Tsimilli-Michael M., Papageorgiou G.C.: On the question of the light-harvesting role of ß-carotene in photosystem II and photosystem I core complexes.–Plant Physiol. Bioch. 81: 121–127, 2014.CrossRefGoogle Scholar
  31. Tang X., Stewart W. K., Vincent L. et al.: Automatic plankton image recognition.–In: Panigrahi S., Ting K.C. (ed.): Artificial Intelligence for Biology and Agriculture. Pp. 177–199. Springer, Dordrecht 1998.CrossRefGoogle Scholar
  32. Trytek M., Janik E., Maksymiec W. et al.: The spectral and catalytic studies of chlorophylls and pheophytins in mimetic biotransformation of a-pinene.–J. Photoch. Photobio. A 223: 14–24, 2011.CrossRefGoogle Scholar
  33. van den Hoek C.: Revision of the European Species of Cladophora. Pp. 363. Brill Acad. Publ., Leiden 1963.Google Scholar
  34. van Wittenberghe S., Alonso L., Verrelst J. et al.: Upward and downward solar-induced chlorophyll fluorescence yield indices of four tree species as indicators of traffic pollution in Valencia.–Environ. Pollut. 173: 29–37, 2013.CrossRefPubMedGoogle Scholar
  35. Vasconcelos V.M.: Cyanobacterial toxins in Portugal: effects on aquatic animals and risk for human health.–Braz. J. Med. Biol. Res. 32: 249–254, 1999.CrossRefPubMedGoogle Scholar
  36. Wacklin P., Hoffmann L., Komárek J.: Nomenclatural validation of the genetically revised Cyanobacterial genus Dolichospermum (Ralfs ex Bornet et Flahault) comb.–Fottea 9: 59–64, 2009.CrossRefGoogle Scholar
  37. Wang H., Moss R.H., Chen X. et al.: Watershed segmentation of dermoscopy images using a watershed technique.–Skin Res. Technol. 16: 378–384, 2010.PubMedPubMedCentralGoogle Scholar
  38. Wang H., Moss R.H., Chen X. et al.: Modified watershed technique and post-processing for segmentation of skin lesions in dermoscopy images.–Comput. Med. Imag. Grap. 35: 116–120, 2011.CrossRefGoogle Scholar
  39. Wilhelm C., Lenarz-Weiler I.: Energy transfer and pigment composition in three Chl b-containing light-harvesting complexes isolated from Mantoniella squamata (Prasinophyceae), Chlorella fusca (Chlorophyceae) and Sinapis alba.–Photosynth. Res. 13: 101–111, 1987.CrossRefPubMedGoogle Scholar
  40. Wörmke S., Mackowski S., Brotosudarmo T. H. et al.: Monitoring fluorescence of individual chromophores in peridinin–chlorophyll–protein complex using single molecule spectroscopy.–BBA-Bioenergetics 1767: 956–964, 2007.CrossRefPubMedGoogle Scholar
  41. Yao H., Duan Q., Li D. et al.: An improved K-means clustering algorithm for fish image segmentation.–Math. Comput. Model. 58: 790–798, 2013.CrossRefGoogle Scholar
  42. Yentsch C.S., Phinney D.A.: Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations.–J. Plankton Res. 7: 617–632, 1985.CrossRefGoogle Scholar
  43. Zarco-Tejada P.J., Berni J.A.J., Suárez L.: Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection.–Remote Sens. Environ. 113: 1262–1275, 2009.CrossRefGoogle Scholar
  44. Ziegmann M., Abert M., Müller M. et al.: Use of fluorescence fingerprints for the estimation of bloom formation and toxin production of Microcystis aeruginosa.–Water Res. 44: 195–204, 2010.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2017

Authors and Affiliations

  • M. Lauffer
    • 1
    • 2
  • F. Genty
    • 1
    • 2
  • S. Margueron
    • 2
    • 1
  • J. L. Collette
    • 3
  1. 1.LMOPS, EA n°4423Centrale SupélecMetzFrance
  2. 2.LMOPS, EA n°4423Université de LorraineMetzFrance
  3. 3.IMS group, Centrale SupélecUMI n°2958 Georgia Tech/CNRSMetzFrance

Personalised recommendations