, Volume 55, Issue 3, pp 421–433

Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2

  • S. K. Singh
  • V. R. Reddy
  • D. H. Fleisher
  • D. J. Timlin
Original Paper


To assess the relationship between chlorophyll (Chl) fluorescence (CF) and photosynthetic pigments, soybean was grown under varying phosphorus (P) nutrition at ambient and elevated CO2 (EC). The EC stimulated, but P deficiency decreased plant height, node numbers, and leaf area concomitantly with the rates of stem elongation, node addition, and leaf area expansion. Under P deficiency, CF parameters and pigments declined except that carotenoids (Car) were relatively stable indicating its role in photoprotection. The CF parameters were strongly related with Chl concentration but not with Chl a/b or Car. However, total Chl/Car showed the strongest association with CF parameters such as quantum efficiency and yield of photosystem II. This relationship was not affected by CO2 treatment. The high correlation between CF and total Chl/Car underscores the significance of the quantification of both, Chl and Car concentrations, to understand the photochemistry and underlying processes of photoprotection and mechanisms of excess energy dissipation in a given environment.

Additional key words

chlorophyll/carotenoids ratio energy dissipation photochemical quenching relationship response curve 



ambient CO2






elevated CO2


days after planting


days after treatment


quantum efficiency by oxidized (open) PSII reaction center in light or PSII efficiency


main-stem leaf area expansion rate


main-stem node addition rate


main-stem elongation rate


main-stem leaf area


main-stem node number




total chlorophylls


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities.–J. Exp. Bot. 55: 1607–1621, 2004.CrossRefPubMedGoogle Scholar
  2. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo.–Annu. Rev. Plant Biol. 59: 89–113, 2008.CrossRefPubMedGoogle Scholar
  3. Cassman K.G., Whitney A.S., Fox R.L.: Phosphorus requirements of soybean and cowpea as affected by mode of N nutrition.–Agron. J. 73: 17–22, 1981.CrossRefGoogle Scholar
  4. Cordell D., Drangert J.-O., White S.: The story of phosphorus: Global food security and food for thought.–Global Environ. Chang. 19: 292–305, 2009.CrossRefGoogle Scholar
  5. Crafts-Brandner S.J.: Phosphorus nutrition influence on leaf senescence in soybean.–Plant Physiol. 98: 1128–1132, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cure J.D., Rufty T.W., Israel D.W.: Phosphorus stress effects on growth and seed yield responses of nonnodulated soybean to elevated carbon dioxide.–Agron. J. 80: 897–902, 1988.CrossRefGoogle Scholar
  7. Demmig-Adams B.: Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin.–BBA-Bioenergetics 1020: 1–24, 1990.CrossRefGoogle Scholar
  8. Edwards G.E., Baker N.R.: Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?–Photosynth. Res. 37: 89–102, 1993.CrossRefPubMedGoogle Scholar
  9. Fleisher D.H., Wang Q., Timlin D.J. et al.: Response of potato gas exchange and productivity to phosphorus deficiency and carbon dioxide enrichment.–Crop Sci. 52: 1803–1815, 2012.CrossRefGoogle Scholar
  10. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.–Biochim. Biophys. Acta 990: 87–92, 1989.CrossRefGoogle Scholar
  11. Genty B., Harbinson J., Baker N.R.: Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and not photorespiratory conditions.–Plant Physiol. Bioch. 28: 1–10, 1990.Google Scholar
  12. Havaux M.: Carotenoids as membrane stabilizers in chloroplasts.–Trends Plant Sci. 3: 147–151, 1998.CrossRefGoogle Scholar
  13. Hendry G.A.F., Price A.H.: Stress indicators: chlorophylls and carotenoids.–In: Hendry G.A.F., Grime J.P. (ed.): Methods in Comparative Plant Ecology Pp. 148–152. Chapman & Hall, London 1993.CrossRefGoogle Scholar
  14. Hewitt E.J.: Sand and water culture. Methods used in the study of plant nutrition.–In: Technical Communication No. 22. Commonwealth Bureau of Horticulture and Plantation, Commonwealth Agricultural Bureaux Farmham Royal. Pp. 187–190. Maidstone, Kent. Bucks 1952.Google Scholar
  15. IPCC. Summary for policymakers.–In: Stocker T.F., Qin D., Plattner G.-K. et al (ed.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 29. Cambridge University Press, Cambridge and New York 2013.Google Scholar
  16. Israel D.W., Rufty T.W., Cure J.D.: Nitrogen and phosphorus nutritional interactions in a CO2 enriched environment.–J. Plant Nutr. 13: 1419–1433, 1990.CrossRefGoogle Scholar
  17. Ivanov A., Sane P., Hurry V. et al.: Photosystem II reaction centre quenching: Mechanisms and physiological role.–Photosynth. Res. 98: 565–574, 2008a.CrossRefPubMedGoogle Scholar
  18. Ivanov A., Hurry V., Sane P. et al.: Reaction centre quenching of excess light energy and photoprotection of photosystem II.–J Plant Biol. 51: 85–96, 2008b.CrossRefGoogle Scholar
  19. Lambers H., Chapin F.S., Pons T.L.: Plant Physiological Ecology. Chapter 2: Photosynthesis, Respiration, and Long-Distance Transport. 2nd ed. Pp. 11–162. Springer, New York 2010.Google Scholar
  20. Lauer M.J., Pallardy S.G., Blevins D.G., Randall D.D.: Whole leaf carbon exchange characteristics of phosphate deficient soybeans (Glycine max L.).–Plant Physiol. 91: 848–854, 1989.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lichtenthaler H.K., Wellburn A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.–Biochem. Soc. T. 11: 591–592, 1983.CrossRefGoogle Scholar
  22. Lichtenthaler H.K.: Chlorophylls and carotenoids: Pigments of photosynthesis.–Methods Enzymol. 148: 350–382, 1987.CrossRefGoogle Scholar
  23. Maxwell K., Johnson G.N.: Chlorophyll fluorescence: A practical guide.–J. Exp. Bot. 51: 659–668, 2000.PubMedGoogle Scholar
  24. Miranda V., Baker N.R., Long S.P.: Limitations of photosynthesis in different regions of the Zea mays leaf.–New Phytol. 89: 179–190, 1981.CrossRefGoogle Scholar
  25. Netto A.T., Campostrini E., de Oliveira J.G., Yamanishi O.K.: Portable chlorophyll meter for the quantification of photosynthetic pigments, nitrogen and the possible use for assessment of the photochemical process in Carica papaya L.–Braz. J. Plant Physiol. 14: 203–210, 2002.CrossRefGoogle Scholar
  26. Netto A.T., Campostrini E., de Oliveira J.G., Bressan-Smith R.E.: Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves.–Sci. Hortic.-Amsterdam 104: 199–209, 2005.CrossRefGoogle Scholar
  27. Olaizola M., Yamamoto H.Y.: Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros muelleri (Bacillariophyceae).–J. Phycol. 30: 606–612, 1994.CrossRefGoogle Scholar
  28. Ort D.R.: When there is too much light.–Plant Physiol. 125: 29–32, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pascal A.A., Liu Z., Broess K. et al.: Molecular basis of photoprotection and control of photosynthetic light-harvesting.–Nature 436: 134–137, 2005.CrossRefPubMedGoogle Scholar
  30. Reddy K.R., Zhao D.L.: Interactive effects of elevated CO2 and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton.–Field Crop. Res. 94: 201–213, 2005.CrossRefGoogle Scholar
  31. Rohácek K.: Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationships.–Photosynthetica 40: 13–29, 2002.CrossRefGoogle Scholar
  32. Rufty T.W., Siddiqi M.Y., Glass A.D.M., Ruth T.J.: Altered 13NO3-influx in phosphorus limited plants.–Plant Sci. 76: 43–48, 1991.CrossRefGoogle Scholar
  33. Samson G., Prášil O., Yaakoubd B.: Photochemical and thermal phases of chlorophyll a fluorescence.–Photosynthetica 37: 163–182, 1999.CrossRefGoogle Scholar
  34. Seaton G.G.R., Walker D.A.: Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation.–P. R. Soc. B 242: 29–35, 1990.CrossRefGoogle Scholar
  35. Singh S.K., Badgujar G., Reddy V.R. et al.: Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton.–J. Plant Physiol. 170: 801–813, 2013a.CrossRefPubMedGoogle Scholar
  36. Singh S.K., Badgujar G.B., Reddy V.R. et al.: Effect of phosphorus nutrition on growth and physiology of cotton under ambient and elevated carbon dioxide.–J. Agron. Crop Sci. 199: 436–448, 2013b.CrossRefGoogle Scholar
  37. Singh S.K., Hoyos-Villegas V., Ray J.D. et al.: Quantification of leaf pigments in soybean (Glycine max (L.) Merr.) based on wavelet decomposition of hyperspectral features.–Field Crops Res. 149: 20–32, 2013c.CrossRefGoogle Scholar
  38. Singh S.K., Reddy V.R., Fleisher H.D., Timlin J.D.: Growth, nutrient dynamics, and efficiency responses to carbon dioxide and phosphorus nutrition in soybean.–J. Plant Int. 9: 838–849, 2014a.Google Scholar
  39. Singh S.K., Reddy K.R., Reddy V.R., Gao W.: Maize growth and developmental responses to temperature and ultraviolet-B radiation interaction.–Photosynthetica 52: 262–271, 2014b.CrossRefGoogle Scholar
  40. Singh S.K., Reddy V.R.: Combined effects of phosphorus nutrition and elevated carbon dioxide concentration on chlorophyll fluorescence, photosynthesis and nutrient efficiency of cotton.–J. Plant Nutr. Soil Sci. 177: 892–902, 2014.CrossRefGoogle Scholar
  41. Singh S.K., Reddy V.R.: Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration.–J. Photoch. Photobio. B 151: 276–284, 2015.CrossRefGoogle Scholar
  42. Singh S.K., Reddy V.R.: Methods of mesophyll conductance estimation: its impact on key biochemical parameters and photosynthetic limitations in phosphorus stressed soybean across CO2.–Physiol. Plantarum 157: 234–254, 2016.CrossRefGoogle Scholar
  43. van Kooten O., Snel J.F.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.–Photosynth. Res. 25: 147–150, 1990.CrossRefPubMedGoogle Scholar
  44. Walker W.M., Raines G.A., Peck T.R.: Effect of soybean cultivar, phosphorus and potassium upon yield and chemical composition.–J. Plant Nutr. 8: 73–87, 1985.CrossRefGoogle Scholar
  45. Zai X.M., Zhu S.N., Qin P. et al.: Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress.–Photosynthetica 50: 323–328, 2012.CrossRefGoogle Scholar
  46. Zhao D., Reddy K.R., Kakani V.G., Reddy V.R.: Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum.–Eur. J. Agron. 22: 391–403, 2005.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2017

Authors and Affiliations

  • S. K. Singh
    • 1
    • 2
  • V. R. Reddy
    • 1
  • D. H. Fleisher
    • 1
  • D. J. Timlin
    • 1
  1. 1.Crop Systems and Global Change LaboratoryUSDA-ARSBeltsvilleUSA
  2. 2.Wye Research and Education CenterUniversity of MarylandBeltsvilleUSA

Personalised recommendations