, Volume 55, Issue 3, pp 491–500

Photosynthetic and physiological responses of foxtail millet (Setaria italica L.) to low-light stress during grain-filling stage

  • X. Y. Yuan
  • L. G. Zhang
  • L. Huang
  • X. Qi
  • Y. Y. Wen
  • S. Q. Dong
  • X. E. Song
  • H. F. Wang
  • P. Y. Guo
Original Paper


Two foxtail millet (Setaria italica L.) varieties were subjected to different shading intensity treatments during a grain-filling stage in a field experiment in order to clarify physiological mechanisms of low-light effects on the yield. Our results showed that the grain fresh mass per panicle, yield, photosynthetic pigment contents, net photosynthetic rate, stomatal conductance, effective quantum yield of PSII photochemistry, and electron transport rate decreased with the increase of shading intensity, whereas the intercellular CO2 concentration increased in both varieties. In addition, shading changed a double-peak diurnal variation of photosynthesis to a one-peak curve. In conclusion, the lower yield of foxtail millet was caused mainly by a reduction of grain mass assimilated, a decline in chlorophyll content, and the low photosynthetic rate due to low light during the grain-filling stage. Reduced light energy absorption and conversion, restricted electron transfer, and reduced stomatal conductance might cause the decrease in photosynthesis.

Additional key words

agronomic characteristics chlorophyll content chlorophyll fluorescence photosynthetic physiology yield 







intercellular CO2 concentration




days after sowing




electron transport rate


minimal fluorescence yield of the dark-adapted state


maximum fluorescence yield of the dark-adapted state


fresh mass


maximal fluorescence yield of the light-adapted state


steady-state fluorescence yield


maximum quantum yield of PSII photochemistry


stomatal conductance


net photosynthetic rate


saturation pulses


effective quantum yield of PSII photochemistry


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bai Q.Y., Yang R.Q., Zhang L.X. et al.: Salt stress induces accumulation of γ-aminobutyric acid in germinated foxtail millet (Setaria italica L.).–Cereal Chem. 90: 145–149, 2013.CrossRefGoogle Scholar
  2. Cai S.Q., Xu D.Q.: Light intensity-dependent reversible downregulation and irreversible damage of PSII in soybean leaves.–Plant Sci. 163: 847–853, 2002.CrossRefGoogle Scholar
  3. Cui H.Y., Jin L.B., Li B. et al.: [Effects of shading on photosynthetic characteristics and xanthophyll cycle of summer maize in the field.]–Acta Agron. Sin. 39: 478–485, 2013. [In Chinese]CrossRefGoogle Scholar
  4. Cui H.Y., Jin L.B., Li B. et al.: [Effects of shading on stalks morphology, structure and lodging of summer maize in field.]–Sci. Agri. Sin. 45: 3497–3505, 2012. [In Chinese]Google Scholar
  5. Dai Y.J., Shen Z.G., Liu Y. et al.: Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg.–Environ. Exp. Bot. 65: 177–182, 2009.CrossRefGoogle Scholar
  6. Deng Y.M., Li C.C., Shao Q.S. et al.: Differential responses of double petal and multi petal jasmine to shading: I. Photosynthetic characteristics and chloroplast ultrastructure.–Plant Physiol. Bioch. 55: 93–102, 2012.CrossRefGoogle Scholar
  7. Estrada-Campuzano G., Miralles D.J., Slafer G.A.: Yield determination in triticale as affected by radiation in different development phases.–Eur. J. Agron. 28: 597–605, 2008.CrossRefGoogle Scholar
  8. Fan X.W., Chi B.L., Zhang D.M. et al.: [Study on photosynthetic performance of millet hybrids at grain-filling stage.]–J. Shanxi Agric. Sci. 39: 227–229, 2011. [In Chinese]Google Scholar
  9. Fu W.G., Li P.P., Wu Y.Y.: Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce.–Sci. Hortic.-Amsterdam 135: 45–51, 2012.CrossRefGoogle Scholar
  10. Gu S.L., Ma J.P., Du J.E.: [Effect of light condition and inorganic nutrition on seed setting of foxtail millet.]–Acta Agric. Bot. Sin. 4: 17–22, 1989. [In Chinese]Google Scholar
  11. Jia S.F., Dong S.T., Wang K.J. et al.: [Effects of weak light stress on grain yield and photosynthetic traits of maize.]–Chin J. Appl. Ecol. 18: 2456–2461, 2007. [In Chinese]Google Scholar
  12. Jia S.F., Li C.F., Dong S.T. et al.: [Physiological mechanism of shading stress on photosynthetic efficiency in summer maize (Zea mays).]–Chinese J. Plant Ecol. 34: 1439–1447, 2010. [In Chinese]Google Scholar
  13. Jones M.K., Liu X.: Origins of agriculture in East Asia.–Science 324: 730–731, 2009.CrossRefPubMedGoogle Scholar
  14. Kramer D.M., Johnson G., Kiirats O. et al.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes.–Photosynth. Res. 79: 209–218, 2004.CrossRefPubMedGoogle Scholar
  15. Li H.W., Jiang D., Wollenweber B. et al.: Effects of shading on morphology, physiology and grain yield of winter wheat.–Eur. J. Agron. 33: 267–275, 2010.CrossRefGoogle Scholar
  16. Li T., Liu L.N., Jiang C.D. et al.: Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum.–J. Photoch. Photobio. B. 137: 31–38, 2014.CrossRefGoogle Scholar
  17. Liao J.X., Wang G.X.: The diurnal variations of photosynthetic rate and water use efficiency in Setaria italica leaves.–Acta Photophysio. Sin. 25: 362–368, 1999. [In Chinese?]Google Scholar
  18. Liu L., Wang L., Deng F. et al.: Response of osmotic regulation substance content and protective enzyme activities to shading in leaves of different rice genotypes.–Rice Sci. 20: 276–283, 2013.CrossRefGoogle Scholar
  19. Lu D.L., Sun X.L., Wang X. et al.: Effect of shading during grain filling on the physicochemical properties of fresh waxy maize.–J. Integr. Agri. 12: 1560–1567, 2013.CrossRefGoogle Scholar
  20. Makino A.: Photosynthesis, grain yield, and nitrogen utilization in rice and wheat.–Plant Physiol. 155: 125–129, 2011.CrossRefPubMedGoogle Scholar
  21. Mu H., Jiang D., Wollenweber B. et al.: Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat.–J. Agron. Crop Sci. 196: 38–47, 2010.CrossRefGoogle Scholar
  22. Mu H.R., Jiang D., Dai T.B. et al.: [Effect of shading on photosynthesis and chlorophyll fluorescence characters in wheat flag leaves.]–Sci. Agri. Sin. 41: 599–606, 2008. [In Chinese]Google Scholar
  23. Ning N., Yuan X.Y., Dong S.Q. et al.: Increasing selenium and yellow pigment concentrations in foxtail millet (Setaria italica L.) grain with foliar application of selenite.–Biol. Trace Elem. Res. 170: 245–252, 2016.CrossRefPubMedGoogle Scholar
  24. Porra R.J., Thompson W.A., Kriedmann P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy.–BBABioenergetics 975: 384–394, 1989.CrossRefGoogle Scholar
  25. Schnettger B., Critchley C., Santore U.J. et al.: Relationship between photoinhibition of photosynthesis, D1 protein turnover and chloroplast structure: effect of protein synthesis.–Plant Cell Environ. 17: 55–64, 1994.CrossRefGoogle Scholar
  26. Schreiber U.: Pulse-amplitude (PAM) fluorometry and saturation pulse method: An overview.–In: Papageorgiou G.C., (ed.): Chlorophyll Fluorescence: A Signature of Photosynthesis. Pp. 279–319. Springer, Dordrecht 2004.CrossRefGoogle Scholar
  27. Sreenivasulu N., Miranda M., Prakash H.S. et al.: Transcriptome changes in foxtail millet genotypes at high salinity: Identification and characterization of a PHGPX gene specifically upregulated by NaCl in a salt-tolerant line.–J. Plant Physiol. 161: 467–477, 2004.CrossRefPubMedGoogle Scholar
  28. Van Kooten O.V., Snel J.F.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.–Photosynth. Res. 25: 147–150, 1990.CrossRefPubMedGoogle Scholar
  29. Vetriventhan M., Upadhyaya H.D., Anandakumar C.R. et al.: Assessing genetic diversity, allelic richness and genetic relationship among races in ICRISAT foxtail millet core collection.–Plant Genet. Resour.-C 10: 214–223, 2012.CrossRefGoogle Scholar
  30. Xu D.Q., Wu S.: Three phases of dark-recovery course from photoinhibition resolved by the chlorophyll fluorescence analysis in soybean leaves under field conditions.–Photosynthetica 32: 417–423, 1996.Google Scholar
  31. Yang J.D., Zhao H.L., Zhang T.H.: [Different capacities of adaptation to high irradiance of horqin sandy land in mung bean and millet based on their leaf photosynthesis.]–Acta Agron. Sin. 30: 232–235, 2004. [In Chinese]Google Scholar
  32. Yang X.Y., Wan Z.W., Perry L. et al.: Early millet use in northern China.–P. Natl. Acad. Sci. USA 109: 3726–3730, 2012.CrossRefGoogle Scholar
  33. Yuan X.Y., Guo P.Y., Qi X. et al.: Safety of herbicide Sigma Broad on Radix Isatidis (Isatis indigotica Fort.) seedlings and their photosynthetic physiological responses.–Pestic. Biochem. Phys. 106: 45–50, 2013.CrossRefGoogle Scholar
  34. Yuan X.Y., Zhang L.G., Ning N. et al.: Photosynthetic physiological response of Radix Isatidis (Isatis indigotica Fort.) seedlings to nicosulfuron.–PLoS ONE. 9: e105310, 2014CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhong Y., Zhou J.F., Qi H.Y. et al.: [Studies on daily changes and influence factors of the net photosynthetic rate of millet at filling stage.]–J. Jilin Agric. Sci. 33: 5–7, 2008. [In Chinese]Google Scholar

Copyright information

© The Institute of Experimental Botany 2017

Authors and Affiliations

  • X. Y. Yuan
    • 1
  • L. G. Zhang
    • 2
  • L. Huang
    • 1
  • X. Qi
    • 3
  • Y. Y. Wen
    • 1
  • S. Q. Dong
    • 1
  • X. E. Song
    • 1
  • H. F. Wang
    • 1
  • P. Y. Guo
    • 2
  1. 1.Key Laboratory of Crop Chemical Regulation and Chemical Weed Control, Agronomy CollegeShanxi Agricultural UniversityTaiguP. R. China
  2. 2.Institute of Crop SciencesShanxi Academy of Agricultural SciencesTaiyuanP. R. China
  3. 3.Yuncheng Agriculture CommitteeYunchengP. R. China

Personalised recommendations