Advertisement

Photosynthetica

, Volume 54, Issue 4, pp 524–531 | Cite as

Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedlings

  • Y. -Y. Guo
  • H.-Y. Yu
  • D.-S. Kong
  • F. Yan
  • Y.-J. Zhang
Original papers

Abstract

The present study aimed to determine effects of drought stress on Lycium ruthenicum Murr. seedlings. Our results showed that mild drought stress was beneficial to growth of L. ruthenicum seedlings. Their height, basal diameter, crown, leaf number, stem dry mass, leaf and root dry mass increased gradually when the soil water content declined from 34.7 to 21.2%. However, with further decrease of the soil water content, the growth of L. ruthenicum seedlings was limited. After 28 d of treatment, the seedlings were apparently vulnerable to drought stress, which resulted in significant leaf shedding and slow growth. However, growth was restored after rehydration. Drought treatments led to a decrease in contents of chlorophyll (Chl) a, b, and Chl (a+b) and increase in the Chl a/b ratio. After rewatering, the Chl content recovered to the content of the control plants. Under drought stress, minimal fluorescence and nonphotochemical quenching coefficient increased, thereby indicating that L. ruthenicum seedlings could protect PSII reaction centres from damage. Maximum fluorescence, maximum quantum yield, actual quantum yield of PSII photochemistry, and photochemical quenching decreased, which suggested that drought stress impacted the openness of PSII reaction centres. A comparison of these responses might help identify the drought tolerance mechanisms of L. ruthenicum. This could be the reference for the planting location and irrigation arrangements during the growing period of L. ruthenicum.

Additional key words

drought tolerance dry mass photosynthesis relative water content 

Abbreviations

Chl

chlorophyll

CK

control

DAT

days of treatment

DM

dry mass

DS

drought stress

F0

minimal fluorescence

Fm

maximum fluorescence

Fv/Fm

the maximum quantum yield of PSII

qN

the nonphotochemical quenching

qP

the photochemical quenching

R:S

the root to shoot ratio

RWC

relative water content

ФPSII

the quantum yield of PSII

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An Y.Y., Liang Z.S., Hao W.F.: [Growth and physiological responses of the Periploca septum Bunge seedlings to drought stress.]–Acta. Ecol. Sin. 31: 716–725, 2011. [In Chinese]Google Scholar
  2. Chen H.K., Zhao W.H.: Effect of NaCl stress on seed germination of Lycium ruthenicum Murr.–Agr. Sci. Tech. 11: 37–38, 2010.Google Scholar
  3. Cooper K., Farrant J.: Recovery of the resurrection plant Craterostigma wilmsii from desiccation: protection versus repair.–J. Exp. Bot. 53: 1805–1813, 2002.CrossRefPubMedGoogle Scholar
  4. Flexas J., Ribas-Carbó D., Galmés J. et al.: Mesophyll conductance to CO2: current knowledge and future prospects.–Plant Cell. Environ. 31: 602–621, 2008.CrossRefPubMedGoogle Scholar
  5. Golding A.J., Johnson G.N.: Down regulation of linear and activation of cyclic electron transport during drought.–Planta 218: 107–114, 2003.CrossRefPubMedGoogle Scholar
  6. Guo Y.Y., Yu H.Y., Kong D. S. et al.: Effects of gradual soil drought stress on the growth, biomass partitioning, and chlorophyll fluorescence of Prunus mongolica seedlings.–Turk. J. Biol. 39: 532–539, 2015.CrossRefGoogle Scholar
  7. Han D.H., Li S.J., Wang E.J. et al.: [Effect of exogenous calcium on seed germination and seedling physiological characteristics of Lycium ruthenium.]–China. J. Chin. Mater. Med. 39: 34–39, 2014. [In Chinese]Google Scholar
  8. He F. L., Zhao M., Wang J.H. et al.: [Response to droughty stresses and drought resistances evaluation of seed germination of four desert vegetation.]–Arid Land Geogr. 34: 100–106, 2011. [In Chinese]Google Scholar
  9. Kitajima K. Hogan K.P.: Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light.–Plant Cell Environ. 26: 857–865, 2003.CrossRefPubMedGoogle Scholar
  10. Klepper B., Rickman R.W.: Modeling crop root growth and function.–Adv. Agron. 44: 113–132, 1990.CrossRefGoogle Scholar
  11. Krall J.P., Edward G.E.: Relationship between photosystem II activity and CO2 fixation in leaves.–Physiol. Plantarum 86: 180–187, 1992.CrossRefGoogle Scholar
  12. Li F.L., Bao W.K., Wu N.: Effects of water stress on growth, dry matter allocation and water-use efficiency of a leguminous species, Sophora davidii.–Agroforest. Syst. 77: 193–201, 2009.CrossRefGoogle Scholar
  13. Li G.L., Wu H.X., Sun Y.Q. et al.: Response of chlorophyll fluorescence parameters to drought stress in sugar beet seedlings.–Russ. J. Plant Physl+ 60: 337–342, 2013.CrossRefGoogle Scholar
  14. Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.–Methods. Enzymol. 148: 350–382, 1987.CrossRefGoogle Scholar
  15. Liu M.H., Yi L.T., Yu S.Q. et al.: Chlorophyll fluorescence characteristics and the growth response of Elaeocarpus glabripetalus to simulated acid rain.–Photosynthetica 53: 23–28, 2015.CrossRefGoogle Scholar
  16. Liu Z.G., Shu Q.Y., Wang L. et al.: Genetic diversity of the endangered and medically important Lycium ruthenicum Murr. revealed by sequence-related amplified polymorphism (SRAP) markers.–Biochem. Syst. Ecol. 45: 86–97, 2012.CrossRefGoogle Scholar
  17. Lu X.H.: [Study on water physiology and self-maintaining characteristics of five typical desert plants in the lower reaches of tarim river.]–Master Thesis. Pp. 24–26. Xinjiang Agr. Univ. Xinjiang 2009. [In Chinese]Google Scholar
  18. Marron N., Delay D., Petit J.M. et al.: Physiological traits of two Populus × euramericana clones, Luisa Avanzo and Dorskamp, during a water stress and re-watering cycle.–Tree Physiol. 22: 849–858, 2002.CrossRefPubMedGoogle Scholar
  19. Martínez-Carrasco R., Sánchez-Rodriquez J., Pérez P.: Changes in chlorophyll fluorescence during the course of photoperiod and in response to drought in Casuarina equisetifolia forst. and forst.–Photosynthetica 40: 363–368, 2002.CrossRefGoogle Scholar
  20. Maxwell K., Johnson G.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.Google Scholar
  21. Rampino P., Pataleo S., Gerardi C. et al.: Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes.–Plant Cell. Environ. 29: 2143–2152, 2006.CrossRefPubMedGoogle Scholar
  22. Rodiyati A., Arisoesilaningsih E., Isagi Y. et al.: Responses of Cyperus brevifolius (Rottb.) Hassk. and Cyperus kyllingia Endl. to varying soil water availability.–Environ. Exp. Bot. 53: 259–269, 2005.CrossRefGoogle Scholar
  23. Saglam A., Saruhan N., Terzi R. et al.: The relations between antioxidant enzymes and chlorophyll fluorescence parameters in common bean cultivars differing in sensitivity to drought stress.–Russ. J. Plant Physl+ 58: 60–68, 2011.CrossRefGoogle Scholar
  24. Sánchez-Rodríguez E., Rubio-Wilhelmi M., Cervilla L.M. et al.: Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants.–Plant Sci. 178: 30–40, 2010.CrossRefGoogle Scholar
  25. Siemens J.A., Zwiazek J.J.: Effects of water deficit stress and recovery on the root water relations of trembling aspen (Populus tremuloides) seedlings.–Plant Sci. 165: 113–120, 2003.CrossRefGoogle Scholar
  26. Thimmanaik S., Kumar S.G., Kumari G.J. et al.: Photosynthesis and the enzymes of photosynthetic carbon reduction cycle in mulberry during water stress and recovery.–Photosynthetica 40: 233–236, 2002.CrossRefGoogle Scholar
  27. van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.–Photosynth. Res. 25: 147–150, 1990.CrossRefPubMedGoogle Scholar
  28. Wang H.H., Ma R.J., Chen W.: [Effects of cold stratification and dry storage at room temperature on seed germination of eight desert species from the Hexi Corridor of China.]–Chin. J. Plant Eco. 36: 791–801, 2012. [In Chinese]CrossRefGoogle Scholar
  29. Wang W.L., Wan Y.J., Liu B. et al.: [Influence of soil gradual drought stress on Acorus calamus growth and photosynthetic fluorescence characteristics.]–Acta. Ecol. Sin. 33: 3933–3940, 2013. [In Chinese]CrossRefGoogle Scholar
  30. Woo N.S., Badger M.R., Pogson B.J.: A rapid, noninvasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence.–Plant Methods 4: 221–238, 2008.Google Scholar
  31. Wu F.Z., Bao W.K., Li F.L. et al.: Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings.–Environ. Exp. Bot. 63: 248–255, 2008.CrossRefGoogle Scholar
  32. Yang W.Q., Gu M.Y., Kou J.C. et al.: Effect of drought and rewatering on the photosynthesis and Chlorophyll fluorescence of Coronilla varia.–Acta Agrestia Sin. 21: 1130–1135, 2013.Google Scholar
  33. Yin C.Y., Wang X., Duan B.L. et al.: Early growth, dry matter allocation and water use efficiency of two sympatric Populus species as affected by water stress.–Environ. Exp. Bot. 53: 315–322, 2005.CrossRefGoogle Scholar
  34. Zhang H.F., Li X., Wang J.G. et al.: [The structure characteristic of the plant community in the lower reaches of Tarim River.]–Chin. Ecol. Environ. 16: 1219–1224, 2007. [In Chinese]Google Scholar
  35. Zheng J., Ding C.X., Wang L.S. et al.: Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau.–Food. Chem. 126: 859–865, 2011.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  • Y. -Y. Guo
    • 1
  • H.-Y. Yu
    • 1
  • D.-S. Kong
    • 1
  • F. Yan
    • 1
  • Y.-J. Zhang
    • 1
  1. 1.Hexi CollegeZhangye, GansuChina

Personalised recommendations