Advertisement

Photosynthetica

, Volume 54, Issue 4, pp 491–501 | Cite as

Photosynthetic and growth responses of two mustard cultivars differing in phytocystatin activity under cadmium stress

  • T. S. Per
  • S. Khan
  • M. Asgher
  • B. Bano
  • N. A. Khan
Original papers

Abstract

Cadmium inhibits photosynthetic capacity of plants by disturbing protein conformations, whereas phytocystatins prevent degradation of target proteins and are involved in abiotic stress tolerance. Two mustard (Brassica juncea L.) cultivars, Ro Agro 4001 and Amruta, were grown with Cd (50 µM) in order to study physiological and biochemical basis of differences in Cd tolerance. Amruta accumulated higher Cd and H2O2 concentrations in leaves than that of Ro Agro 4001. Cd significantly decreased photosynthesis and growth of plants in both cultivars by reducing a chlorophyll content, gas exchange parameters, and activity of Rubisco; the effects were more prominent in Amruta than those in Ro Agro 4001. The greater photosynthesis and growth of Ro Agro 4001 under Cd stress might be attributed to its higher phytocystatin activity together with greater ascorbate peroxidase activity, photosynthetic nitrogen-use efficiency, sulphur assimilation (ATP-sulphurylase activity and S content), and contents of cysteine and reduced glutathione compared to Amruta. In contrast, the activity of superoxide dismutase (SOD) was higher in Amruta than that of Ro Agro 4001 under control conditions, whereas the Cd treatment increased significantly the SOD activity in both cultivars with the greater increase in Ro Agro 4001. The fluorescence spectra of phytocystatin showed a lesser change in Ro Agro 4001 under Cd stress than that in Amruta suggesting higher resistance of Ro Agro 4001 to Cd. The higher phytocystatin activity under Cd stress in Ro Agro 4001 compared to Amruta enabled the plants to protect their proteins more efficiently. This resulted in a greater increase of photosynthetic capacity in Ro Agro 4001 than that of Amruta. Thus, the phytocystatin activity may be considered as a physiological parameter for augmenting photosynthesis and growth of mustard under Cd stress.

Additional key words

chlorophyll fluorescence fluorescence spectra leaf area phytocystatin plant dry mass 

Abbreviations

ANOVA

analysis of variance

APX

ascorbate peroxidase

ATPS

ATP-sulphurylase

Chl

chlorophyll

Ci

intercellular CO2 concentration

DM

dry mass

ETR

electron transport rate

FM

fresh mass

Fv/Fm

maximal quantum yield of PSII photochemistry

Fv'/Fm'

intrinsic efficiency of PSII

gs

stomatal conductance

GSH

reduced glutathione

LSD

least significant difference

qN

nonphotochemical quenching

qp

photochemical quenching

PN

net photosynthesis

PDM

plant dry mass

PhyCys

phytocystatin

PNUE

photosynthetic nitrogen-use efficiency

PVP

polyvinyl pyrrolidone

ROS

reactive oxygen species

SOD

superoxide dismutase

TPI

proteinase inhibitor

ФPSII

effective quantum yield of PSII photochemistry

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad P., Sarwat M., Bhat N.A. et al.: Alleviation of cadmium toxicity in Brassica juncea L. (Czern & Coss.) by calcium application involves various physiological and biochemical strategies.–PloS one 10: doi:10.1371/journal.pone.0114571, 2015.Google Scholar
  2. Anderson M.E.: Determination of glutathione and glutathione disulfide in biological samples.–Method. Enzymol. 113: 548–555, 1985.CrossRefGoogle Scholar
  3. Anjum N.A., Umar S., Iqbal M. et al.: Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and ascorbate-glutathione cycle metabolism.–Russ. J. Plant Physl+ 58: 92–99, 2011.CrossRefGoogle Scholar
  4. Arai S., Matsumoto I., Emori Y. et al.: Plant seed cystatins and their target enzymes of endogenous and exogenous origin.–J. Agric. Food Chem. 50: 6612–6617, 2002.CrossRefPubMedGoogle Scholar
  5. Asgher M., Khan M.I.R., Anjum N.A. et al.: Minimising toxicity of cadmium in plants–role of plant growth regulators.–Protoplasma 252: 399–413, 2015.Google Scholar
  6. Asgher M., Khan N.A., Khan M.I.R. et al.: Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity.–Ecotoxicol. Environ. Safe. 106: 54–61, 2014.CrossRefGoogle Scholar
  7. Baker N.R., Rosenquist E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities.–J. Exp. Bot. 55: 1607–1621, 2004.CrossRefPubMedGoogle Scholar
  8. Barceló J., Vazquez M.D., Poschenrieder C.: Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.).–New Phytol. 108: 37–49, 1988.CrossRefGoogle Scholar
  9. Bashir H., Ibrahim M.M., Bagheri R. et al.: Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard.–AoB Plants 7: plv001, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Belenghi B., Acconcia F., Trovato M. et al.: AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death.–Eur. J. Biochem. 270: 2593–2604, 2003.CrossRefPubMedGoogle Scholar
  11. Beyer W., Fridovich I.: Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions.–Anal. Biochem. 161: 559–566, 1987.CrossRefPubMedGoogle Scholar
  12. Burzynski M., Klobus G.: Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress.–Photosynthetica 42: 505–510, 2004.CrossRefGoogle Scholar
  13. Chesnin L., Yien C. H.: Turbidimetric determination of available sulphates.–Soil Sci. Soc. Am. J. 15: 149–151, 1950.CrossRefGoogle Scholar
  14. Choppala G., Bolan N.: Cellular mechanisms in higher plants governing tolerance to cadmium toxicity.–Cri. Rev. Plant Sci. 33: 374–391, 2014.CrossRefGoogle Scholar
  15. Cobbett C., Goldsbrough P.: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis.–Annu. Rev. Plant Biol. 53: 159–182, 2002.CrossRefPubMedGoogle Scholar
  16. Eason J.R., West P.J., Brummell D.A. et al.: Overexpression of the protease inhibitor BoCPI-1 in broccoli delays chlorophyll loss after harvest and causes down-regulation of cysteine protease gene expression.–Postharvest Biol. Tec. 97: 23–31, 2014.CrossRefGoogle Scholar
  17. Giannopolitis C.N., Ries S.K.: Superoxide dismutases II purification and quantitative relationship with water-soluble protein in seedlings.–Plant Physiol. 59: 315–318, 1977.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Giatonde M.K.: A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids.–Biochem. J. 104: 627–633, 1967.CrossRefGoogle Scholar
  19. Heiss S., Schäfer H.J., Haag-Kerwer A., Rausch T.: Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP-sulfurylase and APS reductase.–Plant Mol. Biol. 39: 847–857, 1999.CrossRefPubMedGoogle Scholar
  20. Hewitt E.J.: Sand and Water Culture Methods used in the Study of Plant Nutrition. Technical Communication No. 22. Pp. 547. Commonwealth Bureau, London 1966.Google Scholar
  21. Huang Y., Xiao B., Xiong L.: Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice.–Planta 226: 73–85, 2007.CrossRefPubMedGoogle Scholar
  22. Hwang J.E., Hong J.K., Lim C.J. et al.: Distinct expression patterns of two Arabidopsis phytocystatin genes, AtCYS1 and AtCYS2, during development and abiotic stresses.–Plant Cell Rep. 29: 905–915, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Iqbal N., Khan N. A., Nazar R. et al.: Ethylene-stimulated photosynthesis results from increased nitrogen and sulfur assimilation in mustard types that differ in photosynthetic capacity.–Environ. Exp. Bot. 78: 84–90, 2012.CrossRefGoogle Scholar
  24. Iqbal N., Nazar R., Syeed S. et al.: Exogenously-sourced ethylene increases stomatal conductance, photosynthesis, and growth under optimal and deficient nitrogen fertilization in mustard.–J. Exp. Bot. 62: 4955–4963, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jozefczak M., Bohler S., Schat H. et al.: Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of Arabidopsis to cadmium.–Ann. Bot.-London 116: 601–612, 2015.CrossRefGoogle Scholar
  26. Khan M.I.R., Iqbal N., Masood A. et al.: Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants.–Plant Growth Regul. 77: 1–11, 2015.CrossRefGoogle Scholar
  27. Khan M.I.R., Khan N.A.: Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PSII activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism.–Protoplasma 251: 1007–1019, 2014.CrossRefPubMedGoogle Scholar
  28. Khan N.A., Anjum N.A., Nazar R. et al.: Increased activity of ATP-sulfurylase and increased contents of cysteine and glutathione reduce high cadmium-induced oxidative stress in mustard cultivar with high photosynthetic potential.–Russ. J. Plant Physl+ 56: 670–677, 2009.CrossRefGoogle Scholar
  29. Kunert K.J., van Wyk S.G., Cullis C.A. et al.: Potential use of phytocystatins in crop improvement, with a particular focus on legumes.–J. Exp. Bot. 66: 3559–3570, 2015.CrossRefPubMedGoogle Scholar
  30. Kunitz M.: Tissue sulphydryl groups. Crystalline soybean trypsin inhibitor, general properties.–J. Physiol. 30: 291–310, 1947.Google Scholar
  31. Lappartient A.G., Touraine B.: Demand-driven control of root ATP-sulfurylase activity and S uptake in intact canola.–Plant Physiol. 111: 147–157, 1996.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Leung D., Abbenante G., Fairlie D.P.: Protease inhibitors: current status and future prospects.–J. Med. Chem. 43: 305–341, 2000.CrossRefPubMedGoogle Scholar
  33. Li S., Yang W., Yang T. et al.: Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of Elsholtzia argyi–a cadmium accumulating plant.–Int. J. Phytoremediat. 17: 85–92, 2015.Google Scholar
  34. Lindner R. C.: Rapid analytical methods for some of the more common inorganic constituents of plant tissues.–Plant Physiol. 19: 76–89, 1944.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liu C., Guo J., Cui Y. et al.: Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings.–Plant Soil 344: 131–141, 2011.CrossRefGoogle Scholar
  36. Liu L., Sun H., Chen J. et al.: Effects of cadmium (Cd) on seedling growth traits and photosynthesis parameters in cotton (Gossypium hirsutum L.).–Plant Omics 7: 284–290, 2014.Google Scholar
  37. Lowry O.H., Rosebrough N.J., Farr A.L. et al.: Protein measurement with the folin phenol reagent.–J. Biol. Chem. 193: 265–275, 1951.PubMedGoogle Scholar
  38. Martínez M., Cambra I., González-Melendi P. et al.: C1A cysteine-proteases and their inhibitors in plants.–Physiol. Plantarum 145: 85–94, 2012.CrossRefGoogle Scholar
  39. Martínez M., Díaz I.: The origin and evolution of plant cystatins and their target cysteine proteinases indicate a complex functional relationship.–BMC Evol. Biol. 8: 198, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Marschner H.: Functions of mineral nutrients: macronutrients.–In: Marschner H.(ed.): Mineral Nutrition of Higher Plants, 2nd Ed. Pp. 379–396, Academic Press, London 1995.Google Scholar
  41. Masood A., Iqbal N., Khan N.A.: Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulfur in mustard.–Plant Cell Environ. 35: 524–533, 2012.CrossRefPubMedGoogle Scholar
  42. Maxwell K., Johnson G.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.Google Scholar
  43. Mobin M., Khan N.A.: Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress.–J. Plant Physiol. 164: 601–610, 2007.CrossRefPubMedGoogle Scholar
  44. Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast.–Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  45. Noctor G., Strohm M., Jouanin L. et al.: Synthesis of glutathione in leaves of transgenic poplar overexpressing glutamylcysteine synthetase.–Plant Physiol. 112: 1071–1078, 1996.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Okuda T., Matsuda Y., Yamanaka A. et al.: Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment.–Plant Physiol. 97: 1265–1267, 1991.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pernas M., Sá nchez-Monge R., Salcedo G. et al.: Biotic and abiotic stress can induce cystatin expression in chestnut.–FEBS Lett. 467: 206–210, 2000.CrossRefPubMedGoogle Scholar
  48. Prins A., van Heerden P.D., Olmos E. et al.: Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1, 5- bisphosphate carboxylase/oxygenase (Rubisco) vesicular bodies.–J. Exp. Bot. 59: 1935–1950, 2008.CrossRefPubMedGoogle Scholar
  49. Quain M.D., Makgopa M.E., Márquez-García B. et al.: Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max.) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits.–Plant Biotechnol. J. 12: 903–913, 2014.CrossRefPubMedGoogle Scholar
  50. Resurreccion A.P., Makino A., Bennett J. et al.: Effects of sulfur nutrition on the growth and photosynthesis of rice.–Soil Sci. Plant Nutr. 47: 611–620, 2001.CrossRefGoogle Scholar
  51. Sarvari E.: Effects of heavy metals on chlorophyll-protein complexes in higher plants: Causes and consequences.–In: Pessarakli M. (ed.): Handbook of Photosynthesis. Pp. 865–888. CRC Press, Boca Raton 2005.Google Scholar
  52. Shangguan Z., Shao M., Dyckmans J.: Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat.–J. Plant Physiol. 156: 46–51, 2000.CrossRefGoogle Scholar
  53. Sharma S., Rashid F., Bano B.: Studies on low molecular mass phytocystatins purified from Phaseolus mungo (Urd).–Biochemistry-Moscow+ 71: 406–413, 2006.CrossRefPubMedGoogle Scholar
  54. Shi G.R., Cai Q.S.: Photosynthetic and anatomic responses of peanut leaves to cadmium stress.–Photosynthetica 46: 627–630, 2008.CrossRefGoogle Scholar
  55. Takashima T., Hikosaka K., Hirose T.: Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species.–Plant Cell Environ. 27: 1047–1054, 2004.CrossRefGoogle Scholar
  56. van der Vyver C., Schneidereit J., Driscoll S. et al.: Oryzacystatin I expression in transformed tobacco produces a conditional growth phenotype and enhances chilling tolerance.–Plant Biotechnol. J. 1: 101–112, 2003.CrossRefPubMedGoogle Scholar
  57. Usuda H.: The activation state of ribulose 1,5-bisphosphate carboxylase in maize leaves in dark and light.–Plant Cell Physiol. 26: 1455–1463, 1985.Google Scholar
  58. Zhang X., Liu S., Takano T.: Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance.–Plant Mol. Biol. 68: 131–143, 2008.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  • T. S. Per
    • 1
  • S. Khan
    • 2
  • M. Asgher
    • 1
  • B. Bano
    • 2
  • N. A. Khan
    • 1
  1. 1.Department of BotanyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Biochemistry, Life SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations