, Volume 54, Issue 3, pp 367–373 | Cite as

Growth and photosynthetic responses in Jatropha curcas L. seedlings of different provenances to watering regimes

  • C. Y. Yin
  • X. Y. Pang
  • A. D. Peuke
  • X. Wang
  • K. Chen
  • R. G. Gong
Original papers


Seedlings from four provenances of Jatropha curcas were subjected to 80, 50, and 30% of soil field capacity in potted experiments in order to study their responses to water availability. Our results showed that with the decline of soil water availability, plant growth, biomass accumulation, net photosynthetic rate, stomatal conductance (gs), and transpiration rate (E) decreased, whereas leaf carbon isotope composition (δ13C), leaf pigment contents, and stomatal limitation value increased, while maximal quantum yield of PSII photochemistry was not affected. Our findings proved that stomatal limitation to photosynthesis dominated in J. curcas under low water availability. The increase of δ13C should be attributed to the decrease in gs and E under the lowest water supply. J. curcas could adapt to low water availability by adjusting its plant size, stomata closure, reduction of E, increasing δ13C, and leaf pigment contents. Moreover, effects of provenance and the interaction with the watering regime were detected in growth and many physiological parameters. The provenance from xeric habitats showed stronger plasticity in the plant size than that from other provenances under drought. The variations may be used as criteria for variety/provenance selection and improvement of J. curcas performance.

Additional key words

carotenoids chlorophyll fluorescence gas exchange water-use efficiency 



ambient chamber CO2 concentration






intercellular CO2 concentration


transpiration rate


soil field capacity


fresh mass


maximal quantum yield of PSII photochemistry


stomatal conductance


stomatal limitation value


net photosynthetic rate


root/shoot ratio


water-use efficiency


carbon isotope composition


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achten W.M.J., Maes W.H., Reubens B. et al.: Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress.–Biomass Bioenerg. 34: 667–676, 2010.CrossRefGoogle Scholar
  2. Achten W.M.J., Verchot L., Franken Y.J. et al.: Jatropha biodiesel production and use.–Biomass Bioenerg. 32: 1063–1084, 2008.CrossRefGoogle Scholar
  3. Bartholomé J., Mabiala A., Savelli B. et al.: Genetic architecture of carbon isotope composition and growth in Eucalyptus across multiple environments.–New Phytol. 206: 1437–1449, 2015.CrossRefPubMedGoogle Scholar
  4. Berry J.A., Downton W.J.S.: Environmental regulation of photosynthesis.–In: Govindjee (ed.): Photosynthesis: Development, Carbon Metabolism, and Plant Productivity. Vol. II. Pp. 263–343. Academic Press, New York 1982.Google Scholar
  5. Boyer J.S.: Plant productivity and environment.–Science 218: 443–448, 1982.CrossRefPubMedGoogle Scholar
  6. Costa J.M., Ortuño M.F., Lopes C.M. et al.: Grapevine varieties exhibiting differences in stomatal response to water deficits.–Funct. Plant Biol. 39: 179–189, 2012.CrossRefGoogle Scholar
  7. Díaz-López L., Gimeno V., Simón I. et al.: Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance.–Agr. Water Manage. 105: 48–56, 2012.CrossRefGoogle Scholar
  8. Dichio B., Montanaro G., Sofo A., Xiloyannis C.: Stem and whole-plant hydraulics in olive (Olea europaea) and kiwifruit (Actinidia deliciosa).–Trees-Struct. Funct. 27: 183–191, 2013.CrossRefGoogle Scholar
  9. Divakara B.N., Upadhyaya H.D., Wani S.P., Gowda C.L.L.: Biology and genetic improvement of Jatropha curcas L.: a review.–Appl. Energ. 87: 732–742, 2010.CrossRefGoogle Scholar
  10. Fairless D.: Biofuel: the little shrub that could-maybe.–Nature 449: 652–655, 2007.CrossRefPubMedGoogle Scholar
  11. Farquhar G., Richards R.: Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes.–Funct. Plant Biol. 11: 539–552, 1984.Google Scholar
  12. Fini A., Bellasio C., Pollastri S. et al.: Water relations, growth, and leaf gas exchange as affected by water stress in Jatropha curcas.–J. Arid Environ. 89: 21–29, 2013.CrossRefGoogle Scholar
  13. Galmés J., Medrano H., Flexas J.: Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms.–New Phytol. 175: 81–93, 2007.CrossRefPubMedGoogle Scholar
  14. Inskeep W.P., Bloom P.R.: Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone.–Plant Physiol. 77: 483–485, 1985.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jiang H.M., Yang J.C., Zhang J.F.: Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress.–Environ. Pollut. 147: 750–756, 2007.CrossRefPubMedGoogle Scholar
  16. Jongschaap R.E.E., Blesgraaf R.A.R., Bogaard T.A. et al.: The water footprint of bioenergy from Jatropha curcas L.–P. Natl. Acad. Sci. USA 106: E92, 2009. doi: 10.1073/pnas.0907272106CrossRefGoogle Scholar
  17. Kheira A.A.A., Atta N.M.M.: Response of Jatropha curcas L. to water deficit: Yield, water use efficiency and oilseed characteristics.–Biomass Bioenerg. 33: 1343–1350, 2009.CrossRefGoogle Scholar
  18. Kumar A., Sharma S.: An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review.–Ind. Crop. Prod. 28: 1–10, 2008.CrossRefGoogle Scholar
  19. Kumar G., Biswarup S., Lin C.: Pretreatment and hydrolysis methods for recovery of fermentable sugars from de-oiled Jatropha waste.–Bioresource Technol. 145: 275–279, 2013.CrossRefGoogle Scholar
  20. Li C., Berninger F., Koskela J., Sonninen E.: Drought responses of Eucalyptus microtheca provenances depend on seasonality of rainfall in their place of origin.–Aust. J. Plant Physiol. 27: 231–238, 2000.Google Scholar
  21. Lichtenthaler H.K., Wellburn A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.–Biochem. Soc. Trans. 11: 591–592, 1983.CrossRefGoogle Scholar
  22. Maes W.H., Achten W.M.J., Muys B.: Use of inadequate data and methodological errors lead to an overestimation of the water footprint of Jatropha curcas.–P. Natl. Acad. Sci. USA 106: E91, 2009a. doi: 10.1073/pnas.0906788106CrossRefGoogle Scholar
  23. Maes W.H., Achten W.M.J., Reubens B. et al.: Plant-water relationships and growth strategies of Jatropha curcas L. saplings under different levels of drought stress.–J. Arid Environ. 73: 877–884, 2009b.CrossRefGoogle Scholar
  24. Maes W.H., Trabucco A., Achten W.M.J., Muys B.: Climatic growing conditions of Jatropha curcas L.–Biomass Bioenerg. 33: 1481–1485, 2009c.CrossRefGoogle Scholar
  25. Maxwell K., Johnson G.N.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  26. Ovando-Medina I., Sánchez-Gutiérrez A., Adriano-Anaya L. et al.: Genetic diversity in Jatropha curcas populations in the state of Chiapas, Mexico.–Diversity 3: 641–659, 2011.CrossRefGoogle Scholar
  27. Popluechai S., Breviario D., Mulpuri S. et al.: Narrow genetic and apparent phenetic diversity in Jatropha curcas: initial success with generating low phorbol ester interspecific hybrids.–Nat. Preced. hdl:10101/npre.2009.2782.1, 2009.Google Scholar
  28. Rajaona A.M., Brueck H., Seckinger C., Asch F.: Effect of salinity on canopy water vapor conductance of young and 3-year-old Jatropha curcas L.–J. Arid Environ. 87: 35–41, 2012.CrossRefGoogle Scholar
  29. Rao G.R., Korwar G.R., Shanker A.K., Ramkrishna Y.S.: Genetic associations, variability and diversity in seed characters, growth, reproductive phenology and yield in Jatropha curcas (L.) accessions.–Trees-Struct. Funct. 22: 697–709, 2008.CrossRefGoogle Scholar
  30. Rosenqvist E., van Kooten O.: Chlorophyll fluorescence: a general description and nomenclature.–In: De Ell J.R., Toivonen P.M.A. (ed.): Practical Applications of Chlorophyll Fluorescence in Plant Biology. Pp. 31–78. Kluwer Acad. Publ., Dordrecht 2003.CrossRefGoogle Scholar
  31. Samsuri A., Zoveidavianpoor M.: Does the maturity of Jatropha curcas L. affect the quality and quantity of the yield of oil for biodiesel production?–Int. J. Green Energy 11: 193–205, 2014.CrossRefGoogle Scholar
  32. Sapeta H., Costa J.M., Lourenço T. et al.: Drought stress response in Jatropha curcas: Growth and physiology.–Environ. Exp. Bot. 85: 76–84, 2013.CrossRefGoogle Scholar
  33. Trabucco A., Achten W.M.J., Bowe C. et al.: Global mapping of Jatropha curcas yield based on response of fitness to present and future climate.–GCB-Bioenergy 2: 139–151, 2010.Google Scholar
  34. Varone L., Ribas-Carbo M., Cardona C. et al.: Stomatal and nonstomatal limitations to photosynthesis in seedlings and saplings of Mediterranean species pre-conditioned and aged in nurseries: Different response to water stress.–Environ. Exp. Bot. 75: 235–247, 2012.CrossRefGoogle Scholar
  35. Ye M., Li C., Francis G., Makkar H.P.S.: Current situation and prospects of Jatropha curcas as a multipurpose tree in China.–Agroforest Syst. 76: 487–497, 2009.CrossRefGoogle Scholar
  36. Yin C., Pang X., Chen K. et al.: The water adaptability of Jatropha curcas is modulated by soil nitrogen availability.–Biomass Bioenerg. 47: 71–81, 2012.CrossRefGoogle Scholar
  37. Yin C., Pang X., Chen K.: The effects of water, nutrient availability and their interaction on the growth, morphology and physiology of two poplar species.–Environ. Exp. Bot. 67: 196–203, 2009a.CrossRefGoogle Scholar
  38. Yin C., Pang X., Lei Y.: Populus from high altitude has more efficient protective mechanisms under water stress than from low-altitude habitats: A study in greenhouse for cuttings.–Physiol. Plantarum 137: 22–35, 2009b.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  • C. Y. Yin
    • 1
  • X. Y. Pang
    • 1
  • A. D. Peuke
    • 2
  • X. Wang
    • 3
  • K. Chen
    • 4
  • R. G. Gong
    • 5
  1. 1.Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of Biology, Chinese Academy of SciencesChengduChina
  2. 2.ADP International Plant Science ConsultingGundelfingen-WildtalGermany
  3. 3.Department of StatisticsThe Pennsylvania State University, State CollegeNew YorkUSA
  4. 4.College of Life Science and TechnologySouthwest University of Science and TechnologyMianyang, Sichuan ProvenceChina
  5. 5.Horticulture CollegeSichuan Agricultural UniversityYa’an, Sichuan ProvinceChina

Personalised recommendations