Photosynthetica

, Volume 54, Issue 3, pp 381–389 | Cite as

Comparison of morphological and physiological characteristics in two phenotypes of a rare and endangered plant, Begonia fimbristipula Hance

  • Y. Wang
  • L. Shao
  • J. Wang
  • H. Ren
  • H. Liu
  • Q. M. Zhang
  • Q. F. Guo
  • X. W. Chen
Original papers

Abstract

The rare and endangered plant, Begonia fimbristipula, shows red and green phenotypes, differentiated by a coloration of the abaxial leaf surface. In this study, we compared morphological and physiological traits of both phenotypes. The results showed that the red phenotype contained a significantly higher chlorophyll content, closer arrangement of chloroplasts, and a more developed grana. In addition, the red phenotype transferred significantly more light energy into the electron transport during the photoreaction. Similarly, the maximum photosynthetic rate, instantaneous water-use and light-use efficiencies of the red B. fimbristipula were all significantly higher than those of the green individuals. The differentiation between these two phenotypes could be caused by their different survival strategies under the same conditions; epigenetic variations may be in some correlation with this kind of phenotype plasticity. Red B. fimbristipula has an advantage in resource acquisition and utilization and possesses a better self-protection mechanism against changes in environmental conditions, therefore, it might adapt better to global climate change compared to the green phenotype. Further studies on the possible epigenetic regulation of those phenotypic differentiations are needed.

Additional key words

anatomy epigenetic macronutrient morphology pigment 

Abbreviations

AQY

apparent quantum yield

Car

carotenoids

Chl

chlorophyll

F0

minimal fluorescence yield of the darkadapted state

F0'

minimal fluorescence yield of the light-adapted state

Fm

maximal fluorescence yield of the dark-adapted state

Fm'

maximal fluorescence yield of the light-adapted state

Fs

steady-state fluorescence yield

Fv/Fm

maximal quantum yield of PSII photochemistry

ILUE

instantaneous light-use efficiency

IWUE

instantaneous water-use efficiency

LA

leaf area

LCP

lightcompensation point

LSP

light-saturation point

NPQ

nonphotochemical quenching

Pmax

light-saturated net photosynthetic rate

PN

net photosynthetic rate

qP

photochemical fluorescence quenching coefficient

RD

respiration rate

SEM

scanning electron microscope

SLA

specific leaf area

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham E.M., Kyriazopoulos A.P., Parissi Z.M.: Growth, dry matter production, phenotypic plasticity, and nutritive value of three natural populations of Dactylis glomerata L. under various shading treatments.–Agroforest. Syst. 88: 287–299, 2014.CrossRefGoogle Scholar
  2. Allen J.F., Forsberg J.: Molecular recognition in thylakoid structure and function.–Trends Plant Sci. 6: 317–326, 2001.CrossRefPubMedGoogle Scholar
  3. Allis C.D., Jenuwein T., Reinberg D. et al. (ed.): Epigenetics. Pp. 408. Cold Spring Harbor Lab. Press, New York 2007.Google Scholar
  4. Boyko A., Kovalchuk I.: Epigenetic control of plant stress.–Environ. Mol. Mutagen. 49: 61–72, 2008.CrossRefPubMedGoogle Scholar
  5. Bradshaw A.D.: Evolutionary significance of phenotypic plasticity in plants.–Adv. Genet. 13: 115–155, 1965.CrossRefGoogle Scholar
  6. Chinnusamy V., Zhu J.K.: Epigenetic regulation of stress responses in plants.–Curr. Opin. Plant. Biol. 12: 133–139, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Clausen J., Keck D., Hiesey W.M.: Experimental Studies on the Nature of Species. I. Effect of Varied Environments on Western North American Plants. Pp. 132. Carnegie Inst. Washington, Washington DC 1940.Google Scholar
  8. Coley P.D., Aide T.M.: Red coloration of tropical young leaves: a possible antifungal defence?–J. Trop. Ecol. 5: 293–300, 1989.CrossRefGoogle Scholar
  9. Cooney L.J., Van Klink J.W., Hughes N.M. et al.: Red leaf margins indicate increased polygodial content and function as visual signals to reduce herbivory in Pseudowintera colorata.–New Phytol. 194: 488–497, 2012.CrossRefPubMedGoogle Scholar
  10. Dalling J.W., Winter K., Nason J.D. et al.: The unusual life history of Alesis blackiana: a shade-persistent pioneer tree?–Ecology 82: 933–945, 2001.CrossRefGoogle Scholar
  11. Davidson A.M., Jennions M., Nicotra A.B.: Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis.–Ecol. Lett. 14: 419–431, 2011.CrossRefPubMedGoogle Scholar
  12. Demmig-Adams B., Adams W.W.: Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation.–New Phytol. 172: 11–21, 2006.CrossRefPubMedGoogle Scholar
  13. Deng Y., Li C., Shao Q. et al.: Differential responses of double petal and multi petal jasmine to shading: I. Photosynthetic characteristics and chloroplast ultrastructure.–Plant Physiol. Bioch. 55: 93–102, 2012a.CrossRefGoogle Scholar
  14. Deng Y., Shao Q., Li C. et al.: Differential responses of double petal and multi petal jasmine to shading: II. Morphology, anatomy and physiology.–Sci. Hortic.-Amsterdam 144: 19–28, 2012b.CrossRefGoogle Scholar
  15. Donato A.M., de Morretes B.L.: Plinia edulis–leaf architecture and scanning electron micrographs.–Braz. J. Pharmacogn. 23: 410–418, 2013.CrossRefGoogle Scholar
  16. Dong M.: [Survey, Observation and Analysis of Terrestrial Biocommunities]. Pp. 38. Chinese Standard Press, Beijing 1996.[In Chinese]Google Scholar
  17. Gould K.S.: Nature’s Swiss army knife: The diverse protective roles of anthocyanins in leaves.–J. Biomed. Biotechnol. 5: 314–320, 2004.CrossRefGoogle Scholar
  18. Gu C.Z.: [Flora of China]. Pp. 194. Science Press, Beijing 1999.[In Chinese]Google Scholar
  19. Henderson I.R., Jacobsen S.E.: Epigenetic inheritance in plants.–Nature 447: 418–424, 2007.CrossRefPubMedGoogle Scholar
  20. Holton T.A., Cornish E.C.: Genetics and biochemistry of anthocyanin biosynthesis.–Plant Cell 7: 1071–1083, 1995.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hughes N. M.: The photoprotective role of anthocyanin pigment in leaf tissues.–Photosynthetica 46: 637–640, 2009.Google Scholar
  22. Joesting H.M., McCarthy B.C., Brown K.J.: Determining the shade tolerance of American chestnut using morphological and physiological leaf parameters.–Forest. Ecol. Manage. 257: 280–286, 2009.CrossRefGoogle Scholar
  23. Kim B.G., Kim J.H., Min S.Y. et al.: Anthocyanin content in rice is related to expression levels of anthocyanin biosynthetic genes.–J. Plant Biol. 50: 156–160, 2007.CrossRefGoogle Scholar
  24. Kitajima M., Butler W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone.–Biochim. Biophys. Acta 376: 105–115, 1975.CrossRefPubMedGoogle Scholar
  25. Koerselman W., Meuleman A.F.M.: The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation.–J. Appl. Ecol. 33: 1441–1450, 1996.CrossRefGoogle Scholar
  26. Kordyum E., Klimenko E.: Chloroplast ultrastructure and chlorophyll performance in the leaves of heterophyllous Nuphar lutea (L.) Smith plants.–Aquat. Bot. 110: 84–91, 2013.CrossRefGoogle Scholar
  27. Kubis S.E., Castilho A.M., Vershinin A.V. et al.: Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation.–Plant. Mol. Biol. 52: 69–79, 2003.CrossRefPubMedGoogle Scholar
  28. Kurepin L.V., Farrow S., Walton L.J. et al.: Phenotypic plasticity of sun and shade ecotypes of Stellaria longipes in response to light quality signaling: Cytokinins.–Environ. Exp. Bot. 84: 25–32, 2012.CrossRefGoogle Scholar
  29. Landhäusser S.M., Lieffers V.J.: Photosynthesis and carbon allocation of six boreal tree species grown in understory and open conditions.–Tree Physiol. 21: 243–250, 2001.CrossRefPubMedGoogle Scholar
  30. Lee D.W.: Anthocyanins in leaves: distribution, phylogeny and development.–Adv. Bot. Res. 37: 37–53, 2002.CrossRefGoogle Scholar
  31. Lee D.W., Collins T.M.: Phylogenetic and ontogenetic influences on the distribution of anthocyanins and betacyanins in leaves of tropical plants.–Int. J. Plant Sci. 162: 1141–1153, 2001.CrossRefGoogle Scholar
  32. Lee D.W., Gould K.S.: Anthocyanins in leaves and other vegetative organs: An introduction.–Adv. Bot. Res. 37: 1–16, 2002.CrossRefGoogle Scholar
  33. Li Q.Z., Li C.W., Yang T.W.: [Stress response and memory mediated by DNA methylation in plants.]–Plant Physiol. J. 50: 725–734, 2014.[In Chinese]Google Scholar
  34. Li H., Zhang G.C., Xie H.C., et al.: The effects of the phenol concentrations on photosynthetic parameters of Salix babylonica L.–Photosynthetica 53: 430–435, 2015.CrossRefGoogle Scholar
  35. Lin Z.F., Li S.S., Lin G.Z., et al.: Superoxide dismutase activity and lipid peroxidation in relation to senescence of rice leaves.–Acta. Bot. Sin. 26: 605–615, 1984.Google Scholar
  36. Liu N., Guan L.: Linkages between woody plant proliferation dynamics and plant physiological traits in southwestern North America.–J. Plant. Ecol. 5: 407–416, 2012.CrossRefGoogle Scholar
  37. Mattick J.S.: Non-coding RNAs: the architects of eukaryotic complexity.–EMBO Rep. 2: 986–991, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Maxwell K., Johnson G.N.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  39. Moreira N.S., Nascimento L.B.S., Leal-Casta M.V. et al.: Comparative anatomy of leaves of Kalanchoe pinnata and K. crenata in sun and shade conditions, as a support for their identification.–Braz. J. Pharmacogn. 22: 929–936, 2012.CrossRefGoogle Scholar
  40. Moriuchi K.S., Winn A.A.: Relationships among growth, development and plastic response to environment quality in a perennial plant.–New Phytol. 166: 149–158, 2005.CrossRefPubMedGoogle Scholar
  41. Murray J.R., Hackett W.P.: Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L.–Plant Physiol. 97: 343–351, 1991.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nicotra A.B. Atkin O.K., Bonser S.P. et al.: Plant phenotypic plasticity in a changing climate.–Trends Plant Sci. 15: 684–692, 2010.CrossRefPubMedGoogle Scholar
  43. Nijs I., Ferris R., Blum H.: Stomatal regulation in a changing climate: a field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE).–Plant Cell. Environ. 20: 1041–1050, 1997.CrossRefGoogle Scholar
  44. Parkinson J.A., Allen S.E.: A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological materials.–Commun. Soil Sci. Plant 6: 1–11. 1975.CrossRefGoogle Scholar
  45. Pourcel L., Irani N.G., Koo A.J.K. et al.: A chemical complementation approach reveals genes and interactions of flavonoids with other pathways.–Plant J. 74: 383–397, 2013.CrossRefPubMedGoogle Scholar
  46. Reddy V.S., Dash S., Reddy A.R.: Anthocyanin pathway in rice (Oryza sativa L.): identification of a mutant showing dominant inhibition of anthocyanins in leaf and accumulation of proanthocyanins in pericarp.–Theor. Appl. Genet. 91: 301–312, 1995.CrossRefPubMedGoogle Scholar
  47. Schlichting C.D., Smith H.: Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes.–Evol. Ecol. 16: 189–211, 2002.CrossRefGoogle Scholar
  48. Schulze E.D., Beck E., Müller-Hohenstein K.: Plant Ecology. Pp. 118. Springer-Verlag, Berlin 2002.Google Scholar
  49. Shao L., Liang K., Cheng X.W. et al.: [Effect of sucrose on growth of tissue culture seedling and anthocyanin accumulation in Begonia fimbristipula Hance on Dinghushan Mountain].–Chin. Agr. Sci. Bull. 28: 242–246, 2012.[In Chinese]Google Scholar
  50. Shao L., Liang K., Cheng X.W., et al.: [Natural growth characteristics of Begonia fimbristipula Hance population in different habitats of Dinghu Mountain].–Guangdong Agr. Sci. 40: 42–46, 2013.[In Chinese]Google Scholar
  51. Shao Q.S., Wang H.Z., Guo H.P. et al.: Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii.–PLOS One. 9: e85996, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Si C.C., Dai Z.C., Lin Y. et al.: Local adaptation and phenotypic plasticity both occurred in Wedelia trilobata invasion across a tropical island.–Biol. Invasions 16: 2323–2337, 2014.CrossRefGoogle Scholar
  53. Škerget M., Kotnik P., Hadolin M. et al.: Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities.–Food. Chem. 89: 191–198, 2005.CrossRefGoogle Scholar
  54. Souza R.P., Machado E.C., Silva J.A.B. et al.: Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery.–Environ. Exp. Bot. 51: 45–56, 2004.CrossRefGoogle Scholar
  55. Sultan S.E.: Phenotypic plasticity for plant development, function and life history.–Trends Plant Sci. 5: 537–542, 2000.CrossRefPubMedGoogle Scholar
  56. Sun Y.Q., Yan F., Cui X.Y. et al.: Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes.–J. Plant Physiol. 171: 1248–1255, 2014.CrossRefPubMedGoogle Scholar
  57. Tessier J.T., Raynal D.J.: Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation.–J. Appl. Ecol. 40: 523–534, 2003.CrossRefGoogle Scholar
  58. Titus J., Sullivan P.G.: Heterophylly in the yellow waterlily, Nuphar variegate (Nymphaeaceae): effects of [CO2], natural sediment type, and water depth.–Am. J. Bot. 88: 1469–1478, 2001.CrossRefPubMedGoogle Scholar
  59. Wells C.L., Pigliucci M.: Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants.–Perspect. Plant Ecol. 3: 1–18, 2000.CrossRefGoogle Scholar
  60. Wolffe A.P., Matzke M.A.: Epigenetics: regulation through repression.–Science 286: 481–486, 1999.CrossRefPubMedGoogle Scholar
  61. Xing F.W.: [Rare plants of China]. Pp. 129. Hunan Educ. Publ. House, Changsha 2005.[In Chinese]Google Scholar
  62. Xu X., Lu Z., Luo Y.F.: [Determination of trace elements in different graded leaves in Begonia fimbristipula Hance].–Guangdong. Trace. Elem. Sci. 4: 55–57, 2000.[In Chinese]Google Scholar
  63. Ye Z.P., Yu Q.: A coupled model of stomatal conductance and photosynthesis for winter wheat.–Photosynthetica 46: 637–640, 2008.CrossRefGoogle Scholar
  64. Yuan Y.Y., Chiu L.W., Li L.: Transcriptional regulation of anthocyanin biosynthesis in red cabbage.–Planta 230: 1141–1153, 2009.CrossRefPubMedGoogle Scholar
  65. Zhang L.Y., Li G.G.: [The factors affecting anthocyanin content in plantlets of Begonia fimbristipula in vitro II].–Acta. Bot. Yunnanica 8: 60–66, 1986.[In Chinese]Google Scholar
  66. Zhang L.Y., Li G.G., Guo J.Y.: [Some factors affecting the anthocyanin content in plantlets of Begonia fimbristipula in vitro I].–Acta Bot. Yunnanica 7: 195–202, 1985.[In Chinese]Google Scholar
  67. Zilberman D., Henikoff S.: Epigenetic inheritance in Arabidopsis: selective silence.–Curr. Opin. Genet. Dev. 15: 557–562, 2005CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  • Y. Wang
    • 1
    • 5
  • L. Shao
    • 2
    • 5
  • J. Wang
    • 1
    • 5
  • H. Ren
    • 1
  • H. Liu
    • 3
    • 4
  • Q. M. Zhang
    • 1
  • Q. F. Guo
    • 5
  • X. W. Chen
    • 2
  1. 1.Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
  2. 2.College of Life ScienceZhaoqing UniversityZhaoqingChina
  3. 3.International Center for Tropical Botany, Department of Earth and EnvironmentFlorida International UniversityMiami, FloridaUSA
  4. 4.Forestry CollegeGuangxi UniversityNanningChina
  5. 5.Eastern Forest Environmental Threat Assessment CenterUSDA Forest Service, RTPNew YorkUSA

Personalised recommendations