, Volume 54, Issue 2, pp 185–192 | Cite as

Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant

  • S. Mathur
  • H. M. Kalaji
  • A. Jajoo
Open Access
Original papers


Increasing human and industrial activities lead to heavy metal pollution. Heavy metal chromium (Cr) is considered to be a serious environmental contaminant for the biota. Phytotoxic effects of Cr were studied in wheat plants. Growth parameters were largely inhibited as a result of disturbances in the plant cell metabolism in response to Cr toxicity. Chromium toxicity led to decline in a number of active reaction centres of PSII, rate of electron transport, and change in PSII heterogeneity. Chromium did not cause any change in heterogeneity of the reducing side. A significant change in antenna size heterogeneity of PSII occurred in response to Cr toxicity. Chromium seems to have extensive effects on the light harvesting complex of PSII.

Additional key words

Chl a fluorescence growth photosystem II PSII heterogeneity wheat 




Chl a

chlorophyll a


cross section


3-(3,4-dichlorophenyl)-1,1-dimethyl urea




dry mass


electron transport


initial fluorescence


maximum fluorescence


fresh mass


variable fluorescence


heavy metal


phases of Chl a fluorescence induction curve


plant efficiency analyser




reaction centre




  1. Ali B., Wang B., Ali S. et al.: 5-Aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. — J. Plant Growth Regul. 32: 604–614, 2013a.CrossRefGoogle Scholar
  2. Ali S., Farooq M.H., Hussain S. et al.: Alleviation of chromium toxicity by hydrogen sulfide in barley. — Environ. Toxicol. Chem. 32: 2234–2239, 2013b.CrossRefPubMedGoogle Scholar
  3. Appenroth K.J., Stöckel J., Srivastava A. et al.: Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. — Environ. Pollut. 115: 49–64, 2001.CrossRefPubMedGoogle Scholar
  4. Brestic M., Živcák M., Kunderlíková K. et al.: Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. — Photosynth. Res. 125: 151–166, 2015.CrossRefPubMedGoogle Scholar
  5. Butler W.L., Kitajima M.: Fluorescence quenching in photosystem II of chloroplasts. — Biochim. Biophys. Acta 376: 116–125, 1975.CrossRefPubMedGoogle Scholar
  6. Chen L.S., Cheng L.: Photosystem II is more tolerant to high temperature in apple (Malus domestica Borkh.) leaves than ifruit peel. — Photosynthetica 47: 112–120, 2009.CrossRefGoogle Scholar
  7. Christen D., Schönmann S., Jermini M. et al.: Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. — Environ Exp. Bot. 60: 504–514, 2007.CrossRefGoogle Scholar
  8. Essemine J., Govindachary S., Ammar S. et al.: Enhanced sensitivity of the photosynthetic apparatus to heat stress in digalactosyl-diacylglycerol deficient Arabidopsis. — Environ. Exp. Bot. 80: 16–26, 2012.CrossRefGoogle Scholar
  9. Gill M.: Heavy metal stress in plants: a review. — Int. J. Adv. Res. 2: 1043–1055, 2014.Google Scholar
  10. Gill R.A., Zang L., Ali B. et al.: Chromium-induced physiochemical and ultrastructural changes in four cultivars of Brassica napus L. — Chemosphere 120: 154–164, 2015.CrossRefPubMedGoogle Scholar
  11. Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Biochem. 48: 909–930, 2010.CrossRefPubMedGoogle Scholar
  12. Govindjee: Sixty-three years since Kautsky: chlorophyll a fluorescence. — Funct. Plant Biol. 22: 131–160, 1995.Google Scholar
  13. Hawkes J.S.: What is a „Heavy metal“? — J. Chem. Educ. 74: 1369–1374, 1997.CrossRefGoogle Scholar
  14. Hsu B.D., Lee Y.S., Jang Y.R. et al.: A method for analysis of fluorescence induction curve from DCMU-poisoned chloroplasts. — BBA-Bioenergetics 975: 44–49, 1989.CrossRefGoogle Scholar
  15. Joly D., Carpentier R. et al.: Sigmoidal reduction kinetics of the photosystem II acceptor side in intact photosynthetic materials during fluorescence induction. — Photochem. Photobiol. Sci. 8: 167–173, 2009.CrossRefPubMedGoogle Scholar
  16. Kalaji H.M., Jajoo A., Oukarroum A. et al.: The use of chlorophyll fluorescence kinetics analysis to study the performance of photosynthetic machinery in plants. — In: Parvaiz A., Rasool S. (ed.): Emerging Technologies and Management of Crop Stress Tolerance. Pp. 347–384. Elsevier Academic Press, San Diego 2014.CrossRefGoogle Scholar
  17. Kalaji H.M., Carpentier R., Allakhverdiev S.I. et al.: Fluorescence parameters as early indicators of light stress in barley. — J. Photoch. Photobio. B 112: 1–6, 2012.CrossRefGoogle Scholar
  18. Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. — Funct. Plant Biol. 33: 9–30, 2006.CrossRefGoogle Scholar
  19. Mathur S., Jajoo A.: Investigating deleterious effects of ultraviolet (UV) radiations on wheat by a quick method. — Acta Physiol. Plant. 37: 121–127, 2015.CrossRefGoogle Scholar
  20. Mathur S., Mehta P., Jajoo A.: Effects of dual stress (high salt and high temperature) on the photochemical efficiency of wheat leaves (Triticum aestivum). — Physiol. Mol. Biol. Plants 19: 179–188, 2013CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mathur S., Allakhverdiev S.I., Jajoo A.: Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves (Triticum aestivum). — Biochim. Biophys. Acta 1807: 22–29, 2011.CrossRefPubMedGoogle Scholar
  22. Neubauer C., Schreiber U.: The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination. I. Saturation characteristics and partial control by the photosystem acceptor side. — Z. Naturforsch. 42: 1246–1254, 1987.Google Scholar
  23. Papageorgiou G.C., Govindjee: Photosystem II fluorescence: slow changes-scaling from the past. — J. Photoch. Photobio. B 104: 258–270, 2011.CrossRefGoogle Scholar
  24. Scoccianti V., Crinelli R., Tirillini B. et al.: Uptake and toxicity of Cr (III) in celery seedlings. — Chemosphere 64: 1695–1703, 2006.CrossRefPubMedGoogle Scholar
  25. Shanker A.K., Cervantes C., Loza-Tavera H. et al.: Chromium toxicity in plants. — Environ. Int. 31: 739–753, 2005.CrossRefPubMedGoogle Scholar
  26. Sharma D.C., Sharma C.P., Tripathi R.D.: Phytotoxic lesions of chromium in maize. — Chemosphere 51: 63–68, 2003.CrossRefPubMedGoogle Scholar
  27. Srivastava A., Strasser R.J., Govindjee: Greening of peas: parallel measurements of 77 K emission spectra, O-J-I-P chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. — Photosynthetica 37: 365–392, 1999.CrossRefGoogle Scholar
  28. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of chlorophyll a fluorescence transient. — In: Papageorgiou G., Govindjee (ed.): Advances in Photosynthesis and Respiration: Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 321–362. Springer, Dordrecht 2004.Google Scholar
  29. Strasser R.J., Tsimilli-Michael M.: Activity and heterogeneity of PSII probed in vivo by the chlorophyll a fluorescence rise O-(K)-J-I-P. — In: Garab G. (ed.): Photosynthesis: Mechanisms and Effects. Pp. 4321–4324. Kluwer Academic Publishers, Dordrecht 1998.Google Scholar
  30. Subrahmanyam D.: Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). — Photosynthetica 46: 339–345, 2008.CrossRefGoogle Scholar
  31. Tsimilli-Micheal M., Strasser R.J.: In vivo assessment of stress impact on plant´s vitality: Applications in detecting and evaluating the beneficial role of mycorrhization on host plants. — In: Varma A. (ed.): Mycorrhiza. Pp. 679–703. Springer–Verlag, Berlin, Heidelberg, 2008.CrossRefGoogle Scholar
  32. Tomar R.S., Mathur S., Allakhverdiev S.I., Jajoo A.: Changes in PS II heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum). — J. Bioenerg. Biomembr. 44: 411–419, 2012.CrossRefGoogle Scholar
  33. Tomar R.S., Jajoo A.: Photomodified fluoranthene exerts more harmful effects as compared to intact fluoranthene by inhibiting growth and photosynthetic processes in wheat. — Ecotoxicol. Environ. Safe. 122: 31–36, 2015.CrossRefGoogle Scholar
  34. Tomar R.S., Jajoo A.: A quick investigation of the detrimental effects of environmental pollutant polycyclic aromatic hydrocarbon fluoranthene on the photosynthetic efficiency of wheat (Triticum aestivum). — Ecotoxicology 22: 1313–1318, 2013.CrossRefPubMedGoogle Scholar
  35. Tóth S.Z., Schansker G., Strasser R.J.: In intact leaves, the maximum fluorescence level (FM) is independent of the redox state of the plastoquinone pool: a DCMU-inhibition study. — BBA-Bioenergetics 1708: 275–282, 2005.CrossRefPubMedGoogle Scholar
  36. Vázques M.D., Poschenrieder Ch., Barceló J.: Chromium (VI) induced structural changes in bush bean plants. — Ann. Bot.-London 59: 427–438, 1987.Google Scholar

Copyright information

© The Authors 2016

Authors and Affiliations

  1. 1.School of Life ScienceDevi Ahilya UniversityIndoreIndia
  2. 2.Warsaw University of Life Sciences (SGGW)WarsawPoland

Personalised recommendations