Advertisement

Photosynthetica

, Volume 54, Issue 3, pp 374–380 | Cite as

Effect of diurnal irradiance on night-chilling tolerance of six rubber cultivars

  • Y.-H. Tian
  • H.-F. Yuan
  • J. Xie
  • J.-W. Deng
  • X.-S. Dao
  • Y.-L. Zheng
Original papers

Abstract

The rubber tree (Hevea brasiliensis) is an important tropical crop with a high economic value that has been successfully cultivated in Xishuangbanna, China. Xishuangbanna has a long dry season (November–February) with cold nights and frequent fog events. Thus, it is important to select chilling-tolerant cultivars in order to understand better the role of fog in protecting rubber tree from chilling-induced photodamage. In this study, we examined the photosynthetic responses of six rubber tree cultivars (Lan 873, Yunyan 77-2, Yunyan 77-4, GT1, Reken 523, and Reyan 733-97) to night-chilling stress (0, 5, and 10°C) and two different irradiances (100 and 50% of full sunlight). Our results showed that all six cultivars could withstand nights at 10°C for three days, while night chilling at 0 and 5°C impaired photosynthesis, which was indicated by photoinhibition, decrease of soluble protein content, and accumulation of malondialdehyde. Reken 523 and Reyan 733-97 were more sensitive to night chilling than other cultivars. Low irradiance (50% of full sunlight) after the chilling treatment apparently mitigated the effect of night-chilling stress. It indicates that frequent fog events after cold nights might greatly contribute to the success of rubber tree cultivation in Xishuangbanna.

Additional key words

chlorophyll fluorescence gas exchange reactive oxygen species soluble sugar content stomatal conductance 

Abbreviations

Ci

intercellular CO2 concentration

F0

minimal fluorescence yield of the dark-adapted state

FI

full irradiance treatment

Fm

maximum fluorescence yield of the dark-adapted state

Fv

variable fluorescence

Fv/Fm

maximal quantum yield of PSII photochemistry

gs

stomatal conductance

I50

treatment at 50% of full irradiance

MDA

malondialdehyde

Pmax

lightsaturated photosynthetic rate

ROS

reactive oxygen species

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen D.J., Ort D.R.: Impacts of chilling temperatures on photosynthesis in warm-climate plants.–Trends Plant Sci. 6: 36–42, 2001.CrossRefPubMedGoogle Scholar
  2. Allen D.J., Ratner K., Giller Y.E. et al.: An overnight chill induces a delayed inhibition of photosynthesis at midday in mango (Mangifera indica L).–J. Exp. Bot. 51: 1893–1902, 2000.CrossRefPubMedGoogle Scholar
  3. Annicchiarico P., Collins R.P., Fornasier F., Rhodes I.: Variation in cold tolerance and spring growth among Italian white clover populations.–Euphytica 122: 407–416, 2001.CrossRefGoogle Scholar
  4. Asada K.: Production and scavenging of reactive oxygen species in chloroplasts and their functions.–Plant Physiol. 141: 391–396, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bertamini M., Muthuchelian K., Rubinigg M. et al.: Photoinhibition of photosynthesis in leaves of grapevine (Vitis vinifera L. cv. Riesling). Effect of chilling nights.–Photosynthetica 43: 551–557, 2005.CrossRefGoogle Scholar
  6. Boyer J.S.: Plant productivity and environment.–Science 218: 443–448, 1982.CrossRefPubMedGoogle Scholar
  7. Cao M., Zou X., Warren M., Zhu H.: Tropical forests of Xishuangbanna, China.–Biotropica 38: 306–309, 2006.CrossRefGoogle Scholar
  8. Ciha A.J., Brun W.A.: Effect of pod removal on nonstructural carbohydrate concentration in soybean tissue.–Crop Sci. 18: 773–776, 1978.CrossRefGoogle Scholar
  9. Cohen J.L., Furtado J.C., Barlow M.A. et al.: Arctic warming, increasing snow cover and widespread boreal winter cooling.–Environ. Res. Lett. 7: 014007, 2012.CrossRefGoogle Scholar
  10. Crawford R.M.M.: Studies in Plant Survival, Ecological Case Histories of Plant Adaptation to Adversity. Pp. 265–281. Blackwell Sci. Publ., Oxford 1989.Google Scholar
  11. Danon A.: Environmentally-induced oxidative stress and its signaling.–In: Eaton-Rye J.J., Tripathy B.C., Sharkey T.D. (ed.): Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation. Advances in Photosynthesis and Respiration. Pp. 319–330. Springer, Dordrecht 2012.CrossRefGoogle Scholar
  12. Feng Y.L., Cao K.F.: Photosynthesis and photoinhibition after night chilling in seedlings of two tropical tree species grown under three irradiances.–Photosynthetica 43: 567–574, 2005.CrossRefGoogle Scholar
  13. Feng Y.L., Cao K.F., Zhang J.L.: Photosynthetic characteristics, dark respiration, and leaf mass per unit area in seedlings of four tropical tree species grown under three irradiances.–Photosynthetica 42: 431–437, 2004.CrossRefGoogle Scholar
  14. Foyer C.H., Lelandais M., Kunert K.J.: Photooxidative stress in plants.–Physiol. Plantarum 92: 696–717, 1994.CrossRefGoogle Scholar
  15. Germino M., Smith W.: Differences in microsite, plant form, and low-temperature photoinhibition in alpine plants.–Arct. Antarct. Alp. Res. 32: 388–396, 2000.CrossRefGoogle Scholar
  16. Greer D.H.: The combined effects of chilling and light stress on photoinhibition of photosynthesis and its subsequent recovery.–Plant Physiol. Biochem. 28: 447–455, 1990.Google Scholar
  17. He Y., Li Y., Li X.: The research of cold stress on three revetment plants.–J. Agr. Sci. 5: 102–108, 2013.Google Scholar
  18. Hodges D.M., De Long J.M., Forney C.F., Prange R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds.–Planta 207: 604–611, 1999.CrossRefGoogle Scholar
  19. Hovenden M.J., Warren C.R.: Photochemistry, energy dissipation and cold-hardening in Eucalyptus nitens and E. pauciflora.–Aust. J. Plant Physiol. 25: 581–589, 1998.CrossRefGoogle Scholar
  20. Huang W., Zhang S.B., Cao K.F.: The different effects of chilling stress under moderate light intensity on photosystem II compared with photosystem I and subsequent recovery in tropical tree species.–Photosynth. Res. 103: 175–182, 2010a.CrossRefPubMedGoogle Scholar
  21. Huang W., Zhang S.B., Cao K.F.: Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII.–Plant Cell Physiol. 51: 1922–1928, 2010b.CrossRefPubMedGoogle Scholar
  22. Huang Y., Shen Y., Huang Y., Tan Y.: [Effects of urbanization on radiation fog in Xishuangbanna area.]–Plateau Meteor. 20: 186–190, 2001.[In Chinese]Google Scholar
  23. Klotke J., Kopka J., Gatzke N., Heyer A.G.: Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation-evidence for a role of raffinose in cold acclimation.–Plant Cell Environ. 27: 1395–1404, 2004.CrossRefGoogle Scholar
  24. Kramer D.M., Johnson G., Kiirats O., Edwards G.E.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes.–Photosynth. Res. 79: 209–218, 2004.CrossRefPubMedGoogle Scholar
  25. Krause G.H.: Effects of temperature on energy-dependent fluorescence quenching in chloroplasts.–Photosynthetica 27: 249–252, 1992.Google Scholar
  26. Lei Y.B., Zheng Y.L., Dai K.J. et al.: Different responses of photosystem I and photosystem II in three tropical oilseed crops exposed to chilling stress and subsequent recovery.–Trees Struct. Funct. 28: 923–933, 2014.CrossRefGoogle Scholar
  27. Lemmens R.H.M.J., Soerianegora I., Wong W.C.: Plant Resources of South-East Asia 5(2): Timber Trees: Minor Commercial Timbers. Pp. 655. Backhuys, Leiden 1995.Google Scholar
  28. Li H.M., Ma Y.X., Aide T.M., Liu W.J.: Past, present and future land-use in Xishuangbanna, China and the implications for carbon dynamics.–Forest Ecol. Manage. 255: 16–24, 2008.CrossRefGoogle Scholar
  29. Liu J., Curry J.A., Wang H. et al.: Impact of declining Arctic sea ice on winter snowfall.–P. Natl. Acad. Sci. USA 109: 4074–4079, 2012.CrossRefGoogle Scholar
  30. Long S.P., Humphries S., Falkowski P.G.: Photoinhibition of photosynthesis in nature.–Annu. Rev. Plant Physiol. 45: 633–662, 1994.CrossRefGoogle Scholar
  31. Ma Y., Zhang Y., Lu J., Shao H.: Roles of plant soluble sugars and their responses to plant cold stress.–Afr. J. Biotechnol. 8: 2004–2010, 2009.Google Scholar
  32. Mai J., Herbette S., Vandame M. et al.: Effect of chilling on photosynthesis and antioxidant enzymes in Hevea brasiliensis Muell.–Trees 23: 863–874, 2009.CrossRefGoogle Scholar
  33. Pell E.J., Eckardt N.A., Glick R.E.: Biochemical and molecular basis for impairment of photosynthetic potential.–Photosynth. Res. 39: 453–462, 1994.CrossRefPubMedGoogle Scholar
  34. Santini J., Giannettini J., Pailly O. et al.: Comparison of photosynthesis and antioxidant performance of several Citrus and Fortunella species (Rutaceae) under natural chilling stress.–Trees Struct. Funct. 27: 71–83, 2013.CrossRefGoogle Scholar
  35. Sasaki H., Ichimura K., Oda M.: Changes in sugar content during cold acclimation and deacclimation of cabbage seedlings.–Ann. Bot. 78: 365–369, 1996.CrossRefGoogle Scholar
  36. Thomashow M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms.–Annu. Rev. Plant Physiol. 50: 571–599, 1999.CrossRefGoogle Scholar
  37. Wanner L.A., Junttila O.: Cold-induced freezing tolerance in Arabidopsis.–Plant Physiol. 120: 391–399, 1999.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wang Y., Liu H., Li P. et al.: The effect of chilling stress on membrane-lipid peroxidation of photosynthetic apparatus in rice seedlings in the dark and light.–Acta Phytophysiol. Sin. 12: 244–251, 1986.Google Scholar
  39. Wise R.R. Chilling-enhanced photooxidation: The production, action and study of reactive oxygen species produced during chilling in the light.–Photosynth. Res. 45: 79–97, 1995.CrossRefPubMedGoogle Scholar
  40. Wu Z.L., Liu H.M., Liu L.Y.: Rubber cultivation and sustainable development in Xishuangbanna, China.–Int. J. Sust. Dev. World 8: 337–345, 2001.CrossRefGoogle Scholar
  41. Zhang X.Z.: Crop Physiology Research Method. Pp. 145–146. China Agricultural Press, Beijing 1993.Google Scholar
  42. Zhang Y.J., Holbrook N.M., Cao K.F.: Seasonal dynamics in photosynthesis of woody plants at the northern limit of Asian tropics: potential role of fog in maintaining tropical rainforests and agriculture in Southwest China.–Tree Physiol. 34: 1069–1078, 2014.CrossRefPubMedGoogle Scholar
  43. Zheng Y.L., Feng Y.L., Lei Y.B., Yang C.Y.: Different photosynthetic responses to night chilling among twelve populations of Jatropha curcas.–Photosynthetica 47: 559–566, 2009.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  • Y.-H. Tian
    • 1
  • H.-F. Yuan
    • 1
  • J. Xie
    • 1
  • J.-W. Deng
    • 2
  • X.-S. Dao
    • 2
  • Y.-L. Zheng
    • 2
  1. 1.Yunnan Institute of Tropical CropsJinghongChina
  2. 2.Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglun, MenglaChina

Personalised recommendations