, Volume 54, Issue 3, pp 359–366 | Cite as

Diminution of photosynthesis in rice (Oryza sativa L.) seedlings under elevated CO2 concentration and increased temperature

  • S. Panigrahi
  • M. K. Pradhan
  • D. K. Panda
  • S. K. Panda
  • P. N. Joshi
Original papers


The photosynthetic responses to elevated CO2 concentration (EC) at ambient and ambient +4°C temperature were aßsessed in the second leaf of rice (Oryza sativa L.) seedlings. The duration of different leaf developmental phases, as characterised by changes in photosynthetic pigment contents and photochemical potential, was protracted in the seedlings grown under EC. On the other hand, a temporal shift in the phases of development with an early onset of senescence was observed in the seedlings grown under EC at ambient +4°C temperature. The contents of carotenoids, ß-carotene, and xanthophyll cycle pigments revealed that EC downregulated the protective mechanism of photosynthetic apparatus against oxidative damages, whereas this mechanism assumed higher significance under EC at ambient +4°C temperature. We observed an enhancement in electron transport activity, photochemical potential, and net photosynthesis in spite of a loss in photostasis of photosynthesis under EC. On the other hand, the loss in photostasis of photosynthesis was exacerbated under EC at ambient +4°C temperature due to the decline in electron transport activity, photochemical potential, and net photosynthesis.

Additional key words

chlorophyll fluorescence gas exchange intrinsic water-use efficiency lutein violaxanthin zeaxanthin 





ambient CO2 under ambient temperature






cross section


days of the experiment




elevated CO2 concentration


ambient temperature +4°C


maximum fluorescence


variable fluorescence


stomatal conductance


high performance liquid chromatography


Intergovernmental Panel for Climate Change






net photosynthetic rate


photosynthetic apparatus


reactive oxygen species




intrinsic water-use efficiency






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ainsworth E.A., Rogers A.: The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions.–Plant Cell Environ. 30: 258–270, 2007.CrossRefPubMedGoogle Scholar
  2. Aranjuelo I., Erice G., Nogues S. et al.: The mechanism(s) involved in the photoprotection of PSII at elevated CO2 in nodulated alfalfa plants.–Environ. Exp. Bot. 64: 295–306, 2008.CrossRefGoogle Scholar
  3. Asada K.: The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons.–Annu. Rev. Plant Physiol. 50: 601–639, 1999.CrossRefGoogle Scholar
  4. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo.–Annu. Rev. Plant Biol. 59: 89–113, 2008.CrossRefPubMedGoogle Scholar
  5. Beggs C.J., Wellmann E.: Photocontrol of flavonoid biosynthesis.–In: Kendrick R.E., Kronenberg G.H.M. (ed.): Photomorphogenesis in Plants, 2nd ed. Pp. 733–751. Kluwer Acad. Publ., Dordrecht 1994.CrossRefGoogle Scholar
  6. Berry J., Björkman O.: Photosynthetic response and adaptation to temperature in higher plants.–Annu. Rev. Plant Phys. 31: 491–543, 1980.CrossRefGoogle Scholar
  7. de las Rivas J., Abadia A., Abadia J.: A new reversed phase-HPLC method resolving all major higher plant photosynthetic pigments.–Plant Physiol. 91: 190–192, 1989.CrossRefPubMedCentralGoogle Scholar
  8. Demmig-Adams B.: Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin.–Biochim. Biophys. Acta 1020: 1–24, 1990.CrossRefGoogle Scholar
  9. Flint S.D., Jordan P.W., Caldwell M.M.: Plant protective response to enhanced UV-B under field condition: leaf optical properties and photosynthesis.–Photochem. Photobiol. 41: 95–99, 1985.CrossRefGoogle Scholar
  10. Frank H.A., Cua A., Chynwat V. et al.: Photophysics of carotenoids associated with the xanthophyll cycle in photosynthesis.–Photosynth. Res. 41: 389–395, 1994.CrossRefPubMedGoogle Scholar
  11. Gilmore A.M.: Mechanistic aspects of xanthophyll cycle dependent photo-protection in higher plant chloroplasts and leaves.–Physiol. Plantarum 99: 197–209, 1997.CrossRefGoogle Scholar
  12. Giorio P., Giorio G., Guardagno C.R. et al.: Carotenoid content, leaf gas exchange and non-photochemical quenching in transgenic tomato overexpressing the β-carotene hydroxylase 2 gene (CrtR-b2).–Environ. Exp. Bot. 75: 1–8, 2012.CrossRefGoogle Scholar
  13. Glantz S.A.: Primer of Biostatistics, 2nd ed. Pp. 379. McGraw Hill, New York 1989.Google Scholar
  14. Gounaris K., Brain A., Quinn P.J., Williams W.P.: Structural reorganization of chloroplast thylakoid membranes in response to heat stress.–BBA-Bioenergetics 766: 198–208, 1984.CrossRefGoogle Scholar
  15. Griffin K.L., Anderson O.R., Gastrich M.D. et al.: Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure.–P. Natl. Acad. Sci. USA 98: 2473–2478, 2001.CrossRefGoogle Scholar
  16. Gülen H., Çetinkaya C., Kadiioglu M. et al.: Peroxidase activity and lipid peroxidation in strawberry (Fragaria × ananassa) plants under low temperature.–J. Biol. Environ. Sci. 2: 95–100, 2008.Google Scholar
  17. Havaux M., Niyogi K.K.: The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism.–P. Natl. Acad. Sci. USA 96: 8762–8767, 1999.CrossRefGoogle Scholar
  18. IPCC Report 2001: Third Assessment Report: Climate Change: Impacts, Adaptation, and Vulnerability. http:// www.usgcrp. gov/ipcc/, 2001.Google Scholar
  19. IPCC Report 2007: Climate Change mitigation.–In: Metz B., Davidson O.R., Bosch P.R. et al. (ed.): Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 841. Cambridge University, Cambridge–New York, 2007.Google Scholar
  20. IPCC Report 2014: Summary for policymakers.–In: Field C.B., Barros V.R., Dokken D.J. et al. (ed.): Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 1–32. Cambridge University Press, Cambridge–New York 2014.Google Scholar
  21. Jahns P., Holzwarth A.R.: The role of xanthophyll cycle and lutein in photoprotection of photosystem II.–Biochim. Biophys. Acta 1817: 182–193, 2012.CrossRefPubMedGoogle Scholar
  22. Joshi P.N., Gartia S., Pradhan M.K., Biswal B.: Photosynthetic response of clusterbean chloroplasts to UV-B radiation: Energy imbalance and loss in redox homeostasis between QA and QB of photosystem II.–Plant Sci. 181: 90–95, 2011.CrossRefPubMedGoogle Scholar
  23. Joshi P.N., Gartia S., Pradhan M.K. et al.: Acclimation of clusterbean cotyledon to UVB radiation in the presence of UVA: partial restoration of photosynthetic energy balance and redox homeostasis.–Acta Physiol. Plant. 35: 2323–2328, 2013a.CrossRefGoogle Scholar
  24. Joshi P.N., Nayak L., Misra A.N., Biswal B.: Response of mature, developing and senescing chloroplasts to environmental stress.–In: Biswal B., Krupinska K., Biswal U.C. (ed.): Plastid Development in Leaves During Growth and Senescence. Advances in Photosynthesis and Respiration, Vol. 36. Pp. 641–668. Springer Sci. Business Media, Dordrecht 2013b.CrossRefGoogle Scholar
  25. Kim H., You Y.: The effect of elevated CO2 concentration and increased temperature on growth yield and physiological of rice (Oryza sativa L. cv. Junam).–Adv. Biores. 12: 46–50, 2010.Google Scholar
  26. Kim K., Portis A.R.: Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity.–Plant Cell Physiol. 46: 522–530, 2005.CrossRefPubMedGoogle Scholar
  27. Kutík J., Nátr L., Demmers-Derks H.H., Lawlor D.W.: Chloroplast ultrastructure of sugar beet (Beta vulgaris L.) cultivated in normal and elevated CO2 concentrations with two contrasted nitrogen supplies.–J. Exp. Bot. 46: 1797–1802, 1995.CrossRefGoogle Scholar
  28. Lobell D.B., Schlenker W., Costa-Roberts J.: Climate trends and global crop production since 1980.–Science 333: 616–620, 2011.CrossRefPubMedGoogle Scholar
  29. Mathur S., Agrawal D., Jajoo A.: Photosynthesis: Response to high temperature stress.–J. Photoch. Photobio. B 137: 116–126, 2014.CrossRefGoogle Scholar
  30. Miller A., Tsai C.H., Hemphill D. et al.: Elevated CO2, effects during leaf ontogeny, a new perspective on acclimation.–Plant Physiol. 115: 1195–1200, 1997.PubMedPubMedCentralGoogle Scholar
  31. Mohr H., Schopfer P.: Photosynthesis as a chloroplasts function.–In: Mohr H., Schopfer P. (ed.): Plant Physiology. Pp. 149–185. Springer-Verlag, Berlin–Heidelberg–New York 1995.CrossRefGoogle Scholar
  32. Murchie E.H., Niyogi K.K.: Manipulation of photoprotection to improve plant photosynthesis.–Plant Physiol. 155: 86–92, 2011.CrossRefPubMedGoogle Scholar
  33. Nakano H., Makino A., Mae T.: The effect of elevated partial pressure of CO2 on the relationship between photosynthetic capacity and N content in rice leaves.–Plant Physiol. 115: 191–198, 1997.PubMedPubMedCentralGoogle Scholar
  34. Nie G.Y., Long S.P., Garcia R.L. et al.: Effects of free-air CO2 enrichment on the development of the photosynthetic apparatus in wheat, as indicated by changes in leaf proteins.–Plant Cell Environ. 18: 855–864, 1995.CrossRefGoogle Scholar
  35. Panda S., Mishra A.K., Biswal U.C.: Manganese induced peroxidation of thylakoid lipid and changes in chlorophyll fluorescence during aging of cell free chloroplasts in light.–Phytochemistry 26: 3217–3219, 1987.CrossRefGoogle Scholar
  36. Pospíšil P., Tyystjärvi E.: Molecular mechanism of high temperature-induced inhibition of acceptor side of photosystem II.–Photosynth. Res. 62: 55–66, 1999.CrossRefGoogle Scholar
  37. Rasineni G.K., Guha A., Reddy A.R.: Elevated atmospheric CO2 mitigated photoinhibition in a tropical tree species, Gmelina arborea.–J. Photoch. Photobio. B 103: 159–165, 2011.CrossRefGoogle Scholar
  38. Reddy A.R., Gnanam A.: Photosynthetic productivity prospects under CO2-enriched atmosphere of the 21st century.–In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 342–363. Taylor and Francis, London & New York 2000.Google Scholar
  39. Robertson E.J., Leech R.M.: Significant changes in cell and chloroplast development in young wheat leaves (Triticum aestivum cv Hereward) grown in elevated CO2.–Plant Physiol. 107: 63–71, 1995.PubMedPubMedCentralGoogle Scholar
  40. Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.–Photosynth. Res. 10: 51–62, 1986.CrossRefPubMedGoogle Scholar
  41. Stapleton A.E., Walbot V.: Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage.–Plant Physiol. 105: 881–889, 1994.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterise and screen photosynthetic samples.–In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445–483. Taylor and Francis, London & New York 2000.Google Scholar
  43. Stylinski C.D., Oechel W.C., Gamon J.A. et al.: Effects of lifelong [CO2] enrichment on carboxylation and light utilization of Quercus pubescens Wild examined with gas exchange, biochemistry and optical techniques.–Plant Cell Environ. 23: 1353–1362, 2000.CrossRefGoogle Scholar
  44. Velikova V., Tsonev T., Barta C. et al.: BVOC emissions, photosynthetic characteristics and changes in chloroplast ultrastucture of Platanus orientalis L. exposed to elevated CO2 and high temperature.–Environ. Pollut. 157: 2629–2637, 2009.CrossRefPubMedGoogle Scholar
  45. Wellburn A.R., Lichtenthaler H.K.: Formulae and programme to determine total carotenoids and chlorophyll a and b of leaf extracts in different solvents.–In: Sybesma C. (ed): Advances in Photosynthesis Research. Vol II. Pp. 9–12. Martinus Nijhoff, Dordrecht 1984.CrossRefGoogle Scholar
  46. Wen X., Qiu N., Lu Q., Lu C.: Enhanced thermotolerance of photosystem II in salt adapted plants of the halophyte Artemisia anethifolia.–Planta 220: 486–497, 2005.CrossRefPubMedGoogle Scholar
  47. Zhang F.F., Wang Y.L., Huang Z.Z. et al.: Effects of CO2 enrichment on growth and development of Impatiens hawkeri.–Sci. World J. 2012: 601263, 2012.Google Scholar
  48. Zuo B.Y., Zhang Q., Jiang G.Z. et al.: [Effects of doubled CO2 concentration on ultrastructure, supramolecular architecture and spectral characteristics of chloroplasts from wheat.]–Acta Bot. Sin. 44: 908–912, 2002. [In Chinese]Google Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  • S. Panigrahi
    • 1
  • M. K. Pradhan
    • 1
  • D. K. Panda
    • 2
  • S. K. Panda
    • 3
  • P. N. Joshi
    • 1
  1. 1.Laboratory of Biophysics and BiochemistryAnchal College, Padampur, P.O.: Rajborasambar, Dist: BargarhOdishaIndia
  2. 2.Women’s College, Padampur, P.O.: Rajborasambar, Dist: BargarhOdishaIndia
  3. 3.Royal College of Pharmacy and Health Sciences, Berhamapur, P.O.: Berhamapur, Dist: GanjamOdishaIndia

Personalised recommendations