, Volume 54, Issue 3, pp 446–458 | Cite as

Molecular characterization of 5-chlorophyll a/b-binding protein genes from Panax ginseng Meyer and their expression analysis during abiotic stresses

  • J. Silva
  • Y. J. Kim
  • J. Sukweenadhi
  • S. Rahimi
  • W. S. Kwon
  • D. C. Yang
Original papers


The chlorophyll a/b-binding protein (CAB) serves in both photosystems (PS), I and II, as a coordinator of antenna pigments in the light-harvesting complex (LHC). The CABs constitute abundant and important proteins in the thylakoid membrane of higher plants. In our study, five CAB genes, which contained full-length cDNA sequences from the 4-year-old ginseng leaves (Panax ginseng Meyer), were isolated and named PgCAB. Phylogenetic comparison of the members of the subfamily between ginseng and higher plants, including Arabidopsis, revealed that the putative functions of these ginseng CAB proteins were clustered into the different family of Arabidopsis CABs; two PgCABs in LHCII family and three PgCABs in LHCI family. The expression analysis of PgCABs consistently showed dark-dependent inhibition in leaves. Expression analysis during abiotic stress identified that PgCAB genes responded to heavy metal, salinity, chilling, and UV stresses differently, suggesting their specific function during photosynthesis. This is the first comprehensive study of the CAB gene family in P. ginseng.

Additional key words

gene expression gene isolation 



chlorophyll a/b-binding protein




expressed sequence tags


Murashige and Skoog


reactive oxygen species


Panax ginseng


Arabidopsis thaliana


Ricinus communis


Phaseolus vulgaris


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen J.F., De Paula W.B.M., Puthiyaveetil S., Nield J.: A structural map for chloroplast photosynthesis.–Trends Plant Sci. 16: 645–655, 2011.PubMedCrossRefGoogle Scholar
  2. Andersson J., Wentworth M., Walters R.G. et al.: Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II–effects on photosynthesis, grana stacking and fitness.–Plant J. 35: 350–361, 2003.PubMedCrossRefGoogle Scholar
  3. Arnold J., Bordoli L., Kopp J., Schwede T.: The SWISS-MODEL Workspace. A web-based environment for protein structure homology modeling.–Bioinformatics 22: 195–201, 2006.PubMedCrossRefGoogle Scholar
  4. Bailey T.L., Boden M., Buske F.A. et al.: MEME SUITE: tools for motif discovery and searching.–Nucl. Acids Res. 37: 202–208, 2009.CrossRefGoogle Scholar
  5. Bedbrook J.R., Smith S.M., Ellis J.: Molecular cloning and sequencing of cDNA encoding the precursor to the small subunit of chloroplast ribulose-1,5-biphosphate carboxylase.–Nature 287: 692–697, 1980.CrossRefGoogle Scholar
  6. Baker N.R.: A possible role for photosystem II in environmental perturbations of photosynthesis.–Physiol. Plantarum 81: 563–570, 1991.CrossRefGoogle Scholar
  7. Bannai H., Tamada Y., Maruyama O. et al.: Extensive feature detection of N-terminal protein sorting signals.–Bioinformatics 18: 298–305, 2002.PubMedCrossRefGoogle Scholar
  8. Bassett C.L., Callahan A.M.: Characterization of a type II chlorophyll a/b-binding protein gene (Lhcb2*Pp1) in peach. II. mRNA abundance in developing leaves exposed to sun or shade.–Tree Physiol. 23: 473–480, 2003.PubMedCrossRefGoogle Scholar
  9. Bassett C.L., Callahan A.M., Artlip T.S. et al.: A minimal peach type II chlorophyll a/b binding protein promoter retains tissue specificity and light regulation in tomato.–BCM Biotechnol. 7: 47–58, 2007.Google Scholar
  10. Bassi R., Sandonà D., Croce R.: Novel aspects of chlorophyll a/b-binding proteins.–Physiol. Plantarum 100: 769–779, 1997.CrossRefGoogle Scholar
  11. Belkhodja R., Morales F., Abadia A. et al.: Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.).–Plant Physiol. 104: 667–673, 1994.PubMedPubMedCentralGoogle Scholar
  12. Bergantino E., Dainese P., Cerovic Z. et al.: A post-translational modification of the photosystem II subunit CP29 protects maize from cold stress.–J. Biol. Chem. 270: 8474–8481, 1995PubMedCrossRefGoogle Scholar
  13. Bongi G., Loreto F.: Gas-exchange properties of salt-stressed olive (Olea europea L.) leaves.–Plant Physiol. 90: 1408–1416, 1989.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Boyer J.S.: Plant productivity and environment.–Science 218: 443–448, 1982.PubMedCrossRefGoogle Scholar
  15. Brösche M., Strid A.: Molecular events following perception of ultraviolet-B radiation by plants.–Physiol. Plantarum 117: 1–10, 2003.CrossRefGoogle Scholar
  16. Capel J., Jarillo J.A., Madueño F. et al.: Low temperature regulates Arabidopsis Lhcb gene expression in a lightindependent manner.–Plant J. 13: 411–418, 1998.PubMedCrossRefGoogle Scholar
  17. de Montaigu A., Toth R., Coupland G.: Plant development goes like clockwork.–Trends Genet. 26: 296–306, 2010.PubMedCrossRefGoogle Scholar
  18. El Rabey H.A., Al-Malki A.L., Abulnaja K.O., Rohde W.: Proteome analysis for understanding abiotic stress (salinity and drought) tolerance in Date Palm (Phoenix dactylifera L.).–Int. J. Genomics. 2015: 1–11, 2015.CrossRefGoogle Scholar
  19. Engelken J., Brinkmann H., Adamska I.: Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily.–BMC Evol. Biol. 10: 233, 2010.PubMedPubMedCentralGoogle Scholar
  20. Engelken J., Funk C., Adamska I.: The extended light-harvesting complex (Lhc) protein superfamily: Classification and evolutionary dynamics.–In: Burnap R.L., Vermaas W.F.J. (ed.): Functional Genomics and Evolution of Photosynthetic Systems. Pp. 265–284, Springer, Dordrecht 2012.CrossRefGoogle Scholar
  21. Everard J.D., Gucci R., Kann S.C. et al.: Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity.–Plant Physiol. 106: 281–292, 1994.PubMedPubMedCentralGoogle Scholar
  22. Fischer N., Boudreau E., Hippler M. et al.: A large fraction of PsaF is nonfunctional in photosystem I complexes lacking the PsaJ subunit.–Biochemistry 38: 5546–5552, 1999.PubMedCrossRefGoogle Scholar
  23. Foyer C.H., Noctor G.: Leaves in the dark see the light.–Science 284: 599–601, 1999.PubMedCrossRefGoogle Scholar
  24. Galvez-Valdivieso G., Mullineaux P.M.: The role of reactive oxygen species in signaling from chloroplasts to the nucleus.–Physiol. Plantarum 138: 430–439, 2010.CrossRefGoogle Scholar
  25. Gasteiger E., Hoogland C., Gattiker A. et al.: Protein identification and analysis tools on the ExPASy server.–In: Walker J.M. (ed.), The Proteomics Protocols Handbook. Pp. 571–607. Humana Press, Totowa 2005.CrossRefGoogle Scholar
  26. Geourjon C., Deleage G.: SOPMA: significant improvements in protein secondary structure prediction by consensus prediction form multiple alignments.–Comput. Appl. Biosci. 11: 681–684, 1995.PubMedGoogle Scholar
  27. Gobets B., van Grondelle R.: Energy transfer and trapping in photosystem I.–BBA-Bioenergetics 1507: 80–99, 2001.PubMedCrossRefGoogle Scholar
  28. Green B.R., Durnford D.G.: The chlorophyll-carotenoid proteins of oxygenic photosynthesis.–Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 685–714, 1996.PubMedCrossRefGoogle Scholar
  29. Green B.R., Pichersky E., Kloppstech K.: Chlorophyll a/bbinding proteins: an extended family.–Trends Biochem. Sci. 16: 181–186, 1991.PubMedCrossRefGoogle Scholar
  30. Greenberg B.M., Gaba V., Canaani O. et al.: Separate photosensitizers mediate degradation of the 32 kDa photosystem II reaction centre protein in the visible and UV spectral regions.–P. Natl. Acad. Sci. USA 86: 6617–6620, 1989.CrossRefGoogle Scholar
  31. Harding A.R.: Ginseng and Other Medicinal Plants. Pp. 367. Emporium Publications, Boston 1972.Google Scholar
  32. Henrysson T., Schröder W.P., Spangfort M., Akerlund H.E.: Isolation and characterization of the chlorophyll a/b protein complex CP29 from spinach.–BBA-Bioenergetics 977: 301–308, 1989.CrossRefGoogle Scholar
  33. Hoffman N.E., Pichersky E., Malik V.S. et al.: A cDNA clone encoding a photosystem I protein with homology to photosystem II chlorophyll a/b-binding polypeptides.–P. Natl. Acad. Sci. USA 84: 8844–8848, 1987.CrossRefGoogle Scholar
  34. Horton P., Ruban A.: Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection.–J. Exp. Bot. 56: 365–373, 2005.PubMedCrossRefGoogle Scholar
  35. Humbeck K., Krupinska K.: The abundance of minor chlorophyll a/b -binding proteins CP29 and LHCI of barley (Hordeum vulgare L.) during leaf senescence is controlled by light.–J. Exp. Bot. 54: 375–383, 2003.PubMedCrossRefGoogle Scholar
  36. Chitnis P.R.: Photosystem I: function and physiology.–Annu. Rev. Plant Phys. 52: 593–626, 2001.CrossRefGoogle Scholar
  37. In J.G., Kim M.K., Lee O.R. et al.: Molecular identification of Korean mountain ginseng using an Amplification Refractory Mutation System (ARMS).–J. Ginseng Res. 34: 41–46, 2010.CrossRefGoogle Scholar
  38. In J.G., Lee B.S., Youn J.H. et al.: Molecular characterization of a cDNA encoding chlorophyll a/b binding protein (cab) form Panax ginseng C. A. Meyer.–Korean J. Plant Res. 18: 441–449, 2005.Google Scholar
  39. Jansson S., Green B., Grossman A.R., Hiller R.: A proposal for extending the nomenclature of light-harvesting proteins of the three transmembrane helix type.–Plant Mol. Biol. Rep. 17: 221–224, 1999.CrossRefGoogle Scholar
  40. Jansson S., Pichersky E., Bassi R. et al.: A nomenclature for the genes encoding the chlorophyll a/b -binding proteins of higher plants.–Plant Mol. Biol. Rep. 10: 242–253, 1992.CrossRefGoogle Scholar
  41. Jansson S.: A guide to the identification of the Lhc genes and their relatives in Arabidopsis.–Trends Plant. Sci. 4: 236–240, 1999.PubMedCrossRefGoogle Scholar
  42. Jansson S.: A protein family saga: From photoprotection to lightharvesting (and back?).–In: Demmig-Adams B, Adams W.W.III., and Mattoo A.K. (ed.): Photoprotection, Photoinhibition, Gene Regulation and Environment. Pp. 145–153. Springer, Dordrecht 2006.CrossRefGoogle Scholar
  43. Jensen P.E., Bassi R., Boekema E.J. et al.: Structure, function and regulation of plant photosystem I.–Biochim. Biophys. Acta 1767: 335–352, 2007.PubMedCrossRefGoogle Scholar
  44. Jordan B.R.: Molecular response of plant cells to UV-B stress.–Funct. Plant Biol. 29: 909–918, 2002.CrossRefGoogle Scholar
  45. Jordan B.R.: The effects of UV-B radiation on plants: a molecular perspective.–Adv. Bot. Res. 22: 97–162, 1996.CrossRefGoogle Scholar
  46. Joshi P.N., Biswal B., Kulandaivelu G., Biswal U.C.: Response of senescing wheat leaves to ultraviolet-A light: changes in energy transfer efficiency and PSII photochemistry.–Radiat. Environ. Biophys. 33: 167–176, 1994.PubMedCrossRefGoogle Scholar
  47. Joshi P.N., Gartia S., Pradhan M.K., Biswal B.: Photosynthetic response of clusterbean chloroplasts to UV-B radiation: energy imbalance and loss in redox homeostasis between QA and QB of photosystem II.–Plant. Sci. 181: 90–95, 2011.PubMedCrossRefGoogle Scholar
  48. Joshi P.N., Misra A.N., Nayak L., Biswal B.: Response of mature, developing and senescing chloroplast to environmental stress.–In: Biswal B., Krupinska K., Biswal U.C. (ed.). Plastid Development in Leaves during Growth and Senescence. Pp. 641–668, Springer, Dordrecht 2013.CrossRefGoogle Scholar
  49. Joshi P.N., Ramaswamy N.K., Raval M.K. et al.: Response of senescing leaves of wheat seedlings to UV-A radiation: inhibition of PSII activity in light and darkness.–Environ. Exp. Bot. 38: 237–242, 1997.CrossRefGoogle Scholar
  50. Kim C., Choo G.C., Cho H.S., Lim J.T.: Soil properties of cultivation sites for mountain-cultivated ginseng at local level.–J. Ginseng Res. 39: 76–80, 2015.PubMedCrossRefGoogle Scholar
  51. Kim M.K., Lee B.S., In J.G. et al.: Comparative analysis of expressed sequence tags (ESTs) of ginseng leaf.–Plant Cell Rep. 25: 599–606, 2006.PubMedCrossRefGoogle Scholar
  52. Kim Y.H., Lim S., Han S.H. et al.: Differential expression of 10 sweetpotato peroxidades in response to sulfur dioxide, ozone, and ultraviolet radiation.–Plant Physiol. Biochem. 45: 908–914, 2007.PubMedCrossRefGoogle Scholar
  53. Kim Y.J., Jeon J.N., Jang M.G. et al.: Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer.–J. Ginseng Res. 38: 66–72, 2014a.PubMedCrossRefGoogle Scholar
  54. Kim Y.J., Lee O.R., Oh J.Y. et al.: Functional analysis of HMGRs in biosynthesizing triterpene saponin in Panax ginseng.–Plant Physiol. 165: 1–16, 2014b.CrossRefGoogle Scholar
  55. Kim Y.J., Shim J.S., Krishna P.R. et al.: Isolation and characterization of a glutaredoxin gene from Panax ginseng C. A. Meyer.–Plant Mol. Biol. Rep. 26: 335–349, 2008.CrossRefGoogle Scholar
  56. Klimmek F., Sjödin A., Noutsos C. et al.: Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants.–Plant Physiol. 140: 793–804, 2006.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kovacs E., Keresztes A.: Effect of gamma and UV-B/C radiation on plant cells.–Micron 33: 199–210, 2002.PubMedCrossRefGoogle Scholar
  58. Krasensky J., Jonak C.: Drought, salt, and temperature stressinduced metabolic rearrangements and regulatory networks.–J. Exp. Bot. 63: 1593–1608, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kühlbrandt W., Wang D.N., Fujiyoshi Y.: Atomic model of plant light-harvesting complex by electron crystallography.–Nature 367: 614–621, 1994.PubMedCrossRefGoogle Scholar
  60. Küpper H., Setlík I, Spiller M. et al.: Heavy metal-induced inhibition of photosynthesis: targets of in vivo metal chlorophyll formation.–J. Phycol. 38: 429–441, 2002.CrossRefGoogle Scholar
  61. Kuttkat A. Hartmann A., Hobe S., Paulsen H.: The C-terminal domain of light-harvesting chlorophyll a/b -binding protein is involved in the stabilization of trimeric light-harvesting complex.–Eur. J. Biochem. 242: 288–292, 1996.PubMedCrossRefGoogle Scholar
  62. Kwak J.M., Nguyen V., Schroeder J.I.: The role of reactive oxygen species in hormonal responses.–Plant Physiol. 141: 323–329, 2006.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kyte J., Doolittle R.F.: A simple method for displaying the hydropathic character of a protein.–J. Mol. Biol. 157: 105–132, 1982.PubMedCrossRefGoogle Scholar
  64. Larbi A., Abadía A., Abadía J., Morales F.: Down co-regulation of light absorption, photochemistry, and carboxylation in Fedeficient plants growing in different environments.–Photosynth. Res. 89: 113–126, 2006.PubMedCrossRefGoogle Scholar
  65. Lidon F.J.C., Reboredo F.H., Leitão A.E. et al.: Impact of UV-B radiation on photosynthesis-an overview.–Emir. J. Food Agric. 24: 546–556, 2012.CrossRefGoogle Scholar
  66. Liu X.D., Shen Y.G.: NaCl-induced phosphorylation of light harvesting chlorophyll a/b proteins in thylakoid membranes from the halotolerant green alga, Dunaliella salina.–FEBS Lett. 569: 337–340, 2004.PubMedCrossRefGoogle Scholar
  67. Livak K.J., Schmittgen T.D.: Analysis of relative gene expression data using realtime quantitative PCR and the 2(-delta delta C(T)) methods.–Methods 25: 402–408, 2001.PubMedCrossRefGoogle Scholar
  68. Long S.P., Baker N.R.: Saline terrestrial environments.–In: Baker N.R., Long S.P. (ed.): Photosynthesis in Contrasting Environments. Pp. 63–102, Elsevier, New York 1986.Google Scholar
  69. Lu C., Jiang G., Wang B., Kuang T.: Photosystem II photochemistry and photosynthetic pigment composition in salt-adapted halophyte Artimisia anethifolia grown under outdoor conditions.–J. Plant Physiol. 160: 403–408, 2003.PubMedCrossRefGoogle Scholar
  70. Lu C., Qiu N., Lu Q. et al.: Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors?–Plant Sci. 163: 1063–1068, 2002.CrossRefGoogle Scholar
  71. Matsuoka M.: Classification and characterization of cDNA that encodes the light harvesting chlorophyll a/b -binding protein of photosystem II from Rice.–Plant Cell Physiol. 31: 519–526, 1990.Google Scholar
  72. Melkozernov A.N.: Excitation energy transfer in photosystem I from oxygenic organisms.–Photosynth. Res. 70: 129–153, 2001.PubMedCrossRefGoogle Scholar
  73. Melkozernov A.N., Blankenship R.E.: Structural and functional organization of the peripheral light-harvesting system in photosystem I.–Photosynth. Res. 85: 33–50, 2005.PubMedCrossRefGoogle Scholar
  74. Millar A.J., Kay S.: Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis.–P. Natl. Acad. Sci. USA 93: 15491–15494, 1996.CrossRefGoogle Scholar
  75. Munns R., Termaat A.: Whole plant responses to salinity.–Aust. J. Plant Physiol. 13: 143–160, 1986.CrossRefGoogle Scholar
  76. Munns R.: Genes and salt tolerance: bringing them together.–New. Phytol. 167: 645–663, 2005.PubMedCrossRefGoogle Scholar
  77. Nield J., Redding K., Hippler M.: Remodeling of light-harvesting protein complexes in Chlamydomonas in response to environmental changes.–Eucaryot. Cell 3: 1370–1380, 2004.CrossRefGoogle Scholar
  78. Nott A., Jung H.S., Koussevitzky S., Chory J.: Plastid-to-nucleus retrograde signaling.–Annu. Rev. Plant Biol. 57: 739–759, 2006.PubMedCrossRefGoogle Scholar
  79. Palomares R., Herrmann R.G., Oelmüller R.: Different blue-light requirement for the accumulation of transcripts from nuclear genes for thylakoid proteins in Nicotiana tabacum and Lycopersicon esculentum.–J. Photochem. Photobio. B. 11: 151–162, 1991.CrossRefGoogle Scholar
  80. Parmenter G., Littlejohn R.: Effect of shade on growth and photosynthesis of Panax ginseng.–New Zeal. J. Crop Hort. Sci. 28: 255–269, 2000.CrossRefGoogle Scholar
  81. Pätsikkä E., Kairavuo M., Šeršen F. et al.: Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll.–Plant Physiol. 129: 1359–1367, 2002.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Peer W., Silverthorne J., Peters J.: Developmental and lightregulated expression of individual members of the lightharvesting complex b gene family in Pinus palustris.–Plant Physiol. 111: 627–634, 1996.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Peng H., Kroneck P.M., Küpper H.: Toxicity and deficiency of copper in Elsholtzia splendens affect photosynthesis biophysics, pigments and metal accumulation.–Environ. Sci. Technol. 47: 6120–6128, 2013.PubMedGoogle Scholar
  84. Pichersky E., Bernatzky R., Tanksley S.D. et al.: Molecular characterization and genetic mapping of two clusters of genes encoding chlorophyll a/b -binding proteins in Lycopersicon esculentum (tomato).–Gene 40: 247–258, 1985.PubMedCrossRefGoogle Scholar
  85. Pichersky E., Brock T.G., Nguyen D. et al.: A new member of the CAB gene family: structure, expression and chromosomal location of Cab-8, the tomato gene encoding the Type III chlorophyll a/b -binding polypeptide of photosystem I.–Plant Mol. Biol. 12: 257–270, 1989.CrossRefGoogle Scholar
  86. Pichersky E., Hoffman N.E., Malik V.S. et al.: The tomato Cab-4 and Cab-5 genes encode a second type of CAB polypeptides localized in photosystem II.–Plant Mol. Biol. 9: 109–120, 1987.PubMedCrossRefGoogle Scholar
  87. Pichersky E., Subramaniam R., White M.J. et al.: Chlorophyll a/b binding (CAB) polypeptides of CP29, the internal chlorophyll a/b complex of PSII: characterization of the tomato gene encoding the 26 kDa (type I) polypeptide, and evidence for a second CP29 polypeptide.–Mol. Gen. Genet. 227: 277–284, 1991.PubMedCrossRefGoogle Scholar
  88. Pichersky E., Tanksley S.D., Piechulla B. et al.: Nucleotide sequence and chromosomal location of Cab-7, the tomato gene encoding the type II chlorophyll a/b-binding polypeptide of photosystem I.–Plant Mol. Biol. 11: 69–71, 1988.PubMedCrossRefGoogle Scholar
  89. Pruneda-Paz J.L., Kay S.A.: An expanding universe of circadian networks in high plants.–Trends Plant Sci. 15: 259–265, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ruban A.V., Berera R., Ilioaia C. et al.: Identification of a mechanism of photoprotective energy dissipation in higher plants.–Nature 450: 575–578, 2007.PubMedCrossRefGoogle Scholar
  91. Schwartz E., Pichersky E.: Sequence of two tomato nuclear genes encoding chlorophyll a/b -binding proteins of CP24, a PSII antenna component.–Plant Mol. Biol. 15: 157–160, 1990.PubMedCrossRefGoogle Scholar
  92. Schwartz E., Shen D., Aebersold R. et al.: Nucleotide sequence and chromosomal location of Cab11 and Cab12, the genes for the fourth polypeptide of the photosystem I light-harvesting antenna (LHCI).–FEBS Lett. 280: 229–234, 1991.PubMedCrossRefGoogle Scholar
  93. Schwartz E., Stasys R., Aebersold R. et al.: Sequence of a tomato gene encoding a third type of LHCII chlorophyll a/b -binding polypeptide.–Plant Mol. Biol. 17: 923–925, 1991.PubMedCrossRefGoogle Scholar
  94. Silverthorne J., Tobin E.M.: Demonstration of transcriptional regulation of specific genes by phytochrome action.–P. Natl. Acad. Sci. USA 81: 1112–1116, 1984.CrossRefGoogle Scholar
  95. Spangfort M., Larsson U.K., Ljungberg U. et al.: The 20 kDa apo-polypeptide of the chlorophyll a/b protein complex CP24 -Characterization and complete primary amino sequence.–In: Baltscheffsky M (ed.): Current Research in Photosynthesis. Vol. 2. Pp. 253–256. Kluwer Acad. Publ., Dordrecht 1990.Google Scholar
  96. Stahl D.J, Kloos D.U., Hehl R.: A sugar beet chlorophyll a/b binding protein promoter void of G-box like elements confers strong and leaf specific reporter gene expression in transgenic sugar beet.–BMC Biotech. 4: 31, 2004.CrossRefGoogle Scholar
  97. Staneloni R.T., Rodriguez-Batiller M.J., Casal J.J.: Abscisic acid, high-light, and oxidative stress down-regulate a photosynthetic gene via a promoter motif not involved in phytochromemediated transcriptional regulation.–Mol. Plant. 1: 75–83, 2008.PubMedCrossRefGoogle Scholar
  98. Sun L., Tobin E.M.: Phytochrome-regulated expression of genes encoding light-harvesting chlorophyll a/b-binding protein in two long hypocotyls mutants and wild type plants of Arabidopsis thaliana.–Photochem. Photobiol. 52: 51–56, 1990.PubMedCrossRefGoogle Scholar
  99. Tao L., Zeba N., Ashrafuzzaman M., Hong C.B.: Heavy metal stress-inducible early light-inducible gene CaELIP from hot pepper (Capsicum annuum) shows broad expression patterns under various abiotic stresses and circadian rhythmicity.–Environ. Exp. Bot. 72: 297–303, 2011.CrossRefGoogle Scholar
  100. Terashima I., Funayama S., Sonoike K.: The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II.–Planta 193: 300–306, 1994.CrossRefGoogle Scholar
  101. Thines B., Harmon F.G.: Four easy pieces: mechanisms underlying circadian regulation of growth and development.–Curr. Opin. Plant Biol. 14: 31–37, 2011.PubMedCrossRefGoogle Scholar
  102. Vass I., Turcsányi E., Touloupakis E. et al.: The mechanism of UV-A radiation induced inhibition of photosystem II electron transport studied by EPR and Chl fluorescence.–Biochemistry 41: 10200–10208, 2002.PubMedCrossRefGoogle Scholar
  103. Weatherwax S.C., Ong M.S., Degenhardt J. et al.: The interaction of light and abscisic acid in the regulation of plant gene expression.–Plant Physiol. 111: 363–370, 1996.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Wientjes E., Van Amerongen H., Croce R: LHCII is an antenna of both photosystems after long-term acclimation.–Biochim. Biophys. Acta. 1827: 420–426, 2013.PubMedCrossRefGoogle Scholar
  105. Wollman F.A.: State transitions reveal the dynamics and flexibility of the photosynthetic apparatus.–EMBO J. 20: 3623–3630, 2001.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Xu Y.H., Liu R., Yan L. et al.: Light-harvesting chlorophyll a/b -binding proteins are required for stomatal response to abscisic acid in Arabidopsis.–J. Exp. Bot. 63: 1095–1106, 2012.PubMedCrossRefGoogle Scholar
  107. Yang D.H., Webster J., Adam Z. et al.: Induction of acclimative proteolysis of the light-harvesting chlorophyll a/b protein of photosystem II in response to elevated light intensities.–Plant Physiol. 118: 827–834, 1998.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  • J. Silva
    • 1
  • Y. J. Kim
    • 2
  • J. Sukweenadhi
    • 1
  • S. Rahimi
    • 1
  • W. S. Kwon
    • 2
  • D. C. Yang
    • 1
    • 2
  1. 1.Graduate School of Biotechnology and Ginseng BankCollege of Life Science, Kyung Hee UniversityYonginKorea
  2. 2.Department of Oriental Medicinal BiotechnologyCollege of Life Science, Kyung Hee UniversityYonginKorea

Personalised recommendations