Advertisement

Photosynthetica

, Volume 54, Issue 3, pp 422–429 | Cite as

Chlorophyll a fluorescence analysis of high-yield rice (Oryza sativa L.) LYPJ during leaf senescence

  • Y. W. Wang
  • C. Xu
  • C. F. Lv
  • M. Wu
  • X. J. Cai
  • Z. T. Liu
  • X. M. Song
  • G. X. Chen
  • C. G. Lv
Original papers

Abstract

Photosystem II (PSII) photochemistry was examined by chlorophyll (Chl) a fluorescence analysis in high-yield rice LYPJ flag leaves during senescence. Parameters deduced from the JIP-test showed that inhibition of the donor side of PSII was greater than that of the acceptor side in hybrid rice LYPJ. The natural senescence process was accompanied by the increased inactivation of oxygen-evolving complex (OEC) and a lower total number of active reaction centers per absorption. It indicated that the inhibition of electron transport caused by natural senescence might be caused partly by uncoupling of the OEC and/or inactivation of PSII reaction centers. Chl fluorescence parameters analyzed in this study suggested that energy dissipation was enhanced in order to protect senescent leaves from photodamage. Nevertheless, considerably reduced PSI electron transport activity was observed at the later senescence. Thus, natural senescence inhibited OEC-PSII electron transport, but also significantly limited the PSII-PSI electron flow.

Additional key words

JIP-test natural senescence PSII efficiency thylakoid membrane 

Abbreviations

Chl

chlorophyll

CS

cross section

DF

the total driving force for photosynthesis of the observed system

F0

fluorescence intensity at 50 µs

FJ

fluorescence intensity at the J-step (at 2 ms)

FI

fluorescence intensity at the I-step (at 30 ms)

FM

maximal fluorescence intensity

Fv/Fm

maximum photochemical efficiency of PSII

OEC

oxygen-evolving complex

P680

primary electron donor in PSII

PIcs

the performance index on cross section basis at different times

PItot

the potential for energy conservation from photons absorbed by PSII to the reduction flux (RE) of PSI end acceptors

PQ

plastoquinone

RC

PSII reaction center

tFM

time to reach FM

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberta K.R., Mikkelsen T.N., Ro-Poulsen H.: Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum.–Physiol. Plantarum 133: 199–210, 2008.CrossRefGoogle Scholar
  2. Boureima S., Oukarroum A., Diouf M. et al.: Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence.–Environ. Exp. Bot. 81: 37–43, 2012.CrossRefGoogle Scholar
  3. Breštic M., Živcák M., Olšovská K. et al.: Reduced glutamine synthetase activity plays a role in control of photosynthetic responses to high light in barley leaves.–Plant Physiol. Biochem. 81: 74–83, 2014.CrossRefPubMedGoogle Scholar
  4. Chen C., Chen H., Lin Y.S. et al.: A two-locus interaction causes interspecific hybrid weakness in rice.–Nat. Commun. 5: 3357–3367, 2014.PubMedPubMedCentralGoogle Scholar
  5. Chhotaray D., Chandrakala Y., Mishra C.S.K. et al.: Farm practices influence the photosynthetic performance and plant efficiency of Oryza sativa L.–Acta Physiol. Plant. 36: 1501–1511, 2014.CrossRefGoogle Scholar
  6. Ceppi M.G., Oukarroum A., Çiçek N. et al.: The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress.–Physiol. Plantarum 144: 277–288, 2012.CrossRefGoogle Scholar
  7. D’Amici G.M., Timperio A.M., Zolla L.: Coupling of native liquid phase electrofocusing and blue native polyacrylamide gel electrophoresis: a potent tool for native membrane multiprotein complex separation.–J. Proteome Res. 7: 1326-1240, 2008.Google Scholar
  8. Feng B., Liu P., Li G. et al.: Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-Filling stage of different heat-resistant winter wheat varieties.–J. Agro. Crop. Sci. 200: 143–155, 2014.CrossRefGoogle Scholar
  9. Holland V., Koller S., Brüggemann W.: Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis.–Plant Biol. 16: 801–808, 2014.CrossRefPubMedGoogle Scholar
  10. Hsu B.D.: On the possibility of using a chlorophyll fluorescence parameter as an indirect indicator for the growth of Phalaenopsis seedlings.–Plant Sci. 172: 604–608, 2007.CrossRefGoogle Scholar
  11. Hussain M.I., Reigosa M.J.: A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid.–Plant Physiol. Biochem. 49: 1290–1298, 2011.CrossRefPubMedGoogle Scholar
  12. Jiao D., Ji B., Li X.: Characteristics of chlorophyll fluorescence and membrane-lipid peroxidation during senescence of flag leaf in different cultivars of rice.–Photosynthetica 41: 33–41, 2003.CrossRefGoogle Scholar
  13. Kalachanis D., Manetas Y.: Analysis of fast chlorophyll fluorescence rise (O-K-J-I-P) curves in green fruits indicates electron flow limitations at the donor side of PSII and the acceptor sides of both photosystems.–Physiol. Plantarum 139: 313–323, 2010.Google Scholar
  14. Kalaji H.M., Oukarroum A., Alexandrov V. et al.: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements.–Plant Physiol. Biochem. 81: 16–25, 2014.CrossRefPubMedGoogle Scholar
  15. Kreslavski V.D., Lankin A.V., Vasilyeva G.K. et al.: Effects of polyaromatic hydrocarbons on photosystem II activity in pea leaves.–Plant Physiol. Biochem. 81: 135–142, 2014.CrossRefPubMedGoogle Scholar
  16. Kumar K.S., Dahms H.U., Lee J.S. et al.: Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence.–Ecotoxicol. Environ. Safe. 104: 51–71, 2014.CrossRefGoogle Scholar
  17. Kügler M., Jänsch L., Kruft V. et al.: Analysis of the chloroplast protein complexes by blue-native polyacrylamide gel electrophoresis (BN-PAGE).–Photosynth. Res. 53: 35–44, 1997.CrossRefGoogle Scholar
  18. Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light.–Funct. Plant Biol. 33: 9–30, 2006.CrossRefGoogle Scholar
  19. Lazár D., Nauš J.: Statistical properties of chlorophyll fluorescence induction parameters.–Photosynthetica 35: 121–127, 1998.CrossRefGoogle Scholar
  20. Li X.M., Chen M.J., Li J. et al.: Effect of endophyte infection on chlorophyll a fluorescence in salinity stressed rice.–Biol. Plantarum 58: 589–594, 2014.CrossRefGoogle Scholar
  21. Mohapatra P.K., Khillar R., Hansdah B. et al.: Photosynthetic and fluorescence responses of Solanum melangena L. to field application of dimethoate.–Ecotoxicol. Environ. Safe. 73: 78–83, 2010.CrossRefGoogle Scholar
  22. Osório J., Osório M.L., Correia P.J. et al.: Chlorophyll fluorescence imaging as a tool to understand the impact of iron deficiency and resupply on photosynthetic performance of strawberry plants.–Sci. Hortic.-Amsterdam 165: 148–155, 2014.CrossRefGoogle Scholar
  23. Panda D., Sarkar R.K.: Natural leaf senescence: probed by chlorophyll fluorescence, CO2 photosynthetic rate and antioxidant enzyme activities during grain filling in different rice cultivars.–Physiol. Mol. Biol. Plants 19: 43–51, 2013.CrossRefPubMedGoogle Scholar
  24. Pollastrini M., Holland V., Brüggemann W. et al.: Interactions and competition processes among tree species in young experimental mixed forests, assessed with chlorophyll fluorescence and leaf morphology.–Plant Biol. 16: 323–331, 2014.CrossRefPubMedGoogle Scholar
  25. Qiu Z., Wang L., Zhou Q.: Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings.–Chemosphere 90: 1274–1280, 2013.CrossRefPubMedGoogle Scholar
  26. Schansker G., Tóth S.Z., Strasser R.J.: Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP.–Biochim. Biophys. Acta 1706: 250–261, 2005.CrossRefPubMedGoogle Scholar
  27. Sharma D.K., Fernández J.O., Rosenqvist E. et al.: Genotypic response of detached leaves versus intact plants for chlorophyll fluorescence parameters under high temperature stress in wheat.–J. Plant Physiol. 171: 576–586, 2014.CrossRefPubMedGoogle Scholar
  28. Shen W.J., Chen G.X., Xu J.G. et al.: Overexpression of maize phosphoenolpyruvate carboxylase improves drought tolerance in rice by stabilization the function and structure of thylakoid membrane.–Photosynthetica 53: 436–446, 2015.CrossRefGoogle Scholar
  29. Stefanov D., Petkova V., Denev I.D.: Screening for heat tolerance in common bean (Phaseolus vulgaris L.) lines and cultivars using JIP-test.–Sci. Hortic.-Amsterdam 128: 1–6, 2011.CrossRefGoogle Scholar
  30. Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient.–J. Photochem. Photobiol. B 104: 236–257, 2011.CrossRefPubMedGoogle Scholar
  31. Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria.–Photochem. Photobiol. 61: 32–42, 1995.CrossRefGoogle Scholar
  32. Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: The JIP-test.–In: Mathis P (ed.): Photosynthesis: from Light to Biosphere. Pp. 977–980. Kluwer Academic Publishers, Dordrecht 1995.Google Scholar
  33. Tang Y.L., Wen X.G., Lu C.M.: Differential changes in degradation of chlorophyll-protein complexes of photosystem I and photosystem II during flag leaf senescence of rice.–Plant Physiol. Bioch. 43: 193–201, 2005.CrossRefGoogle Scholar
  34. Timperio A.M., D’Amici G.M., Barta C. et al.: Proteomics, pigment composition, and organization of thylakoid membranes in iron-deficient spinach leaves.–J. Exp. Bot. 58: 3695–3710, 2007.CrossRefPubMedGoogle Scholar
  35. Tsimilli-Michael M., Strasser R.J.: In vivo assessment of plants’ vitality: applications in detecting and evaluating the impact of Mycorrhization on host plants.–In: Varma A. (ed.): Mycorrhiza: State of the Art, Genetics and Molecular Biology, Ecofunction, Biotechnology, Eco-Physiology, Structure and Systematics (3rd edition). Pp. 679–703. Springer, Dordrecht 2008.CrossRefGoogle Scholar
  36. Wang G., Hao Z., Anken R.H. et al.: Effects of UV-B radiation on photosynthesis activity of Wolffia arrhiza as probed by chlorophyll fluorescence transients.–Adv. Space Res. 45: 839–845, 2010a.CrossRefGoogle Scholar
  37. Wang L.J., Fan L., Loescher W. et al.: Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves.–BMC Plant Biol. 10: 34–43, 2010b.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wang Y.W., Zhang J.J., Yu J. et al.: Photosynthetic changes of flag leaves during senescence stage in super high-yield hybrid rice LYPJ grown in field condition.–Plant Physiol. Bioch. 82: 194–201, 2014.CrossRefGoogle Scholar
  39. Wu H.B., Wang B., Chen Y. et al.: Characterization and fine mapping of the rice premature senescence mutant ospse1.–Theor. Appl. Genet. 126: 1897–1907, 2013.CrossRefPubMedGoogle Scholar
  40. Wu M., Wang P.Y., Sun L.G. et al.: Alleviation of cadmium toxicity by cerium in rice seedlings is related to improved photosynthesis, elevated antioxidant enzymes and decreased oxidative stress.–Plant Growth Regul. 74: 251–260, 2014.CrossRefGoogle Scholar
  41. Xia J., Li Y., Zou D.: Effects of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements.–Aquat. Bot. 80: 129–137, 2004.CrossRefGoogle Scholar
  42. Yu G.H., Li W., Yuan Z.Y. et al.: The effects of enhanced UV-B radiation on photosynthetic and biochemical activities in superhigh-yield hybrid rice Liangyoupeijiu at the reproductive stage.–Photosynthetica 51: 33–44, 2013.CrossRefGoogle Scholar
  43. Zhang C.J., Chu H.J., Chen G.X. et al.: Photosynthetic and biochemical activities in flag leaves of a newly developed super high-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage.–J. Plant Res. 120: 209–217, 2007.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  • Y. W. Wang
    • 1
  • C. Xu
    • 1
  • C. F. Lv
    • 1
  • M. Wu
    • 1
    • 2
  • X. J. Cai
    • 1
  • Z. T. Liu
    • 1
  • X. M. Song
    • 1
  • G. X. Chen
    • 1
  • C. G. Lv
    • 3
  1. 1.Jiangsu Key Laboratory of Biodiversity and Biotechnology, Life Sciences CollegeNanjing Normal UniversityNanjingChina
  2. 2.Zijin CollegeNanjing University of Science and TechnologyNanjingChina
  3. 3.Institute of Food and CropsJiangsu Academy of Agricultural SciencesNanjingChina

Personalised recommendations