Photosynthetica

, Volume 54, Issue 2, pp 267–274 | Cite as

Zinc soil application enhances photosynthetic capacity and antioxidant enzyme activities in almond seedlings affected by salinity stress

  • A. Amiri
  • B. Baninasab
  • C. Ghobadi
  • A. H. Khoshgoftarmanesh
Original papers

Abstract

Zinc is a critical mineral nutrient that protects plant cells from salt-induced cell damage. We tested whether the application of Zn at various concentrations [0, 5, 10, or 20 mg kg−1(soil)] would protect almond (Prunus amygdalus) seedlings subjected to salt stress (0, 30, 60, or 90 mM NaCl). All concentrations of Zn, particularly the application of 10 and 20 mg kg−1, increased the net photosynthetic rate, stomatal conductance, the maximal efficiency of PSII photochemistry, and a proline content in almond seedlings grown under salt stress; 20 mg(Zn) kg−1 was the most effective concentration. The activity of superoxide dismutase showed a significant increase under salinity stress and Zn application. The catalase activity decreased in the salt-treated seedlings, but recovered after the Zn treatment. Our results proved the positive effects of Zn on antioxidant enzyme activity scavenging the reactive oxygen species produced under salt stress.

Additional key words

abiotic stress gas exchange net assimilation rate reactive oxygen species 

Abbreviations

CAT

catalase

E

transpiration rate

EC

electrical conductivity

EL

electrolyte leakage

Fv/Fm

maximum quantum yield of PSII

gs

stomatal conductance

PN

net photosynthetic rate

ROS

reactive oxygen species

SOD

superoxide dismutase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abou Hossein E.A., Shehata M.M., El-Sherif M.A.: Phosphorus nutrition of barley plant as affected by zinc, manganese and organic matter application to saline soils. — Egypt. J. Soil Sci. 42: 331–345, 2002.Google Scholar
  2. Aftab T., Masroor M., Khan A. et al.: Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. — J. Plant Growth Regul. 30: 425–435, 2011.CrossRefGoogle Scholar
  3. Alpaslan M., Inal A., Günes A. et al.: Effect of zinc treatment on the alleviation of sodium and chloride injury in tomato (Lycopersicon esculentum L.) grown under salinity. — Turk. J. Agric. For. 23: 1–6, 1999.Google Scholar
  4. Bastam N., Baninasab B., Ghobadi C.: Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. — Plant Growth Regul. 69: 275–284, 2013.CrossRefGoogle Scholar
  5. Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  6. Bethke P.C., Drew M.C.: Stomatal and non-stomatal components to inhibition of photosynthesis in leaves of Capsium annum during progressive exposure to NaCl salinity. — Plant Physiol. 99: 219–226, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Björkman O., Demmig B.: Photon yield of oxygen evolution and chlorophyll fluorescence characteristics at 77°K among vascular plants of diverse origin. — Planta 170: 489–504, 1987.CrossRefPubMedGoogle Scholar
  8. Cakmak I.: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. — New Phytol. 146: 185–205, 2000.CrossRefGoogle Scholar
  9. Cakmak I., Marschner H.: Zinc-dependent changes in ESR signals, NADPH oxidase and plasma membrane permeability in cotton roots. — Physiol. Plantarum 73: 182–186, 1988.CrossRefGoogle Scholar
  10. Chance B., Maehly A.C.: Assay of catalase and peroxidase. — Methods Enzymol. 2: 764–775, 1955.CrossRefGoogle Scholar
  11. Chapman H.D., Pratt P.F.: Methods of Analysis for Soils, Plants and Waters. Pp. 309. University of California, Riverside 1961.Google Scholar
  12. Giannopolitis C.N., Ries S.K.: Superoxide dismutase: I. Occurrence in higher plants. — Plant Physiol. 59: 309–314, 1977.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hare P.D., Cress W.A.: Metabolic implications of stress-induced proline accumulation in plants. — Plant Growth Regul. 21: 79–102, 1997.CrossRefGoogle Scholar
  14. Hernández J.A., Olmos E., Corpas F.J. et al.: Salt-induced oxidative stress in chloroplasts of pea plants. — Plant Sci. 105: 151–167, 1995.CrossRefGoogle Scholar
  15. Hossain M.A., Mostofa M.G., Fujita M.: Cross protection by cold-shock to salinity and drought stress-induced oxidative stress in mustard (Brassica campestris L.) seedlings. — Mol. Plant Breed. 4: 50–70, 2013.Google Scholar
  16. Hu H., Sparks D.: Zinc deficiency inhibits chlorophyll synthesis and gas exchange in ‘Stuart’ pecan. — HortScience 26: 267–268, 1991.Google Scholar
  17. Idrees M., Naeem M., Aftab T. et al.: Salicylic acid mitigates salinity stress by improving antioxidant defense systems and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. — Acta Physiol. Plant. 33: 987–999, 2011.CrossRefGoogle Scholar
  18. Iqbal M., Aslam M., Ranjha A.M., Akhtar J.: Salinity tolerance of rice affected by zinc application. — Pak. J. Biol. Sci. 3: 2055–2057, 2000.CrossRefGoogle Scholar
  19. Khoshbakht D., Ghorbani A., Baninasab B. et al.: Effects of supplementary potassium nitrate on growth and gas-exchange characteristics of salt-stressed citrus seedlings. — Photosynthetica 52: 589–596, 2014.CrossRefGoogle Scholar
  20. Koca H., Bor M., Özdemir F. et al.: The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. — Environ. Exp. Bot. 60: 344–351, 2007.CrossRefGoogle Scholar
  21. Kozlowski T.T., Pallardy S.G.: Growth Control in Woody Plants. Pp. 642. Academic Press, San Diego 1997.Google Scholar
  22. Kozlowski T.T.: Responses of woody plants to flooding and salinity. — Tree Physiol. Monogr. 1: 1–29, 1997.Google Scholar
  23. Lechno S., Zamski E., Tel-Or E.: Salt stress-induced responses in cucumber plants. — J. Plant Physiol. 150: 206–211, 1997.CrossRefGoogle Scholar
  24. Levitt J.: Responses of Plants to Environmental Stresses. II. Water, Radiation, Salt, and Other Stresses. Pp. 607. Academic Press, New York 1980.Google Scholar
  25. Lin C.C., Kao C.H.: Effect of NaCl stress on H2O2 metabolism in rice leaves. — Plant Growth Regul. 30: 151–155, 2000.CrossRefGoogle Scholar
  26. Lutts S., Kinet J.M., Bouharmont J.: NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance.–Ann. Bot.-London 78: 389–398, 1996.CrossRefGoogle Scholar
  27. Maas E.V.: Salt tolerance of plants. — Appl. Agric. Res. 1: 12–26, 1986.Google Scholar
  28. Mickelbart M.V., Marler T.E.: Root-zone sodium chloride influences photosynthesis, water relations and mineral content of sapodilla foliage. — HortScience 31: 230–233, 1996.Google Scholar
  29. Milani P.M., Malakouti M.J., Khademi Z. et al.: A Fertilizer Recommendation Model for the Wheat Field of Iran. Pp. 98. Soil and Water Research Institute, Tehran 1998.Google Scholar
  30. Munns R., Tester M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.CrossRefPubMedGoogle Scholar
  31. Noreen Z., Ashraf M., Akram N.A.: Salt-induced regulation of some key antioxidant enzymes and physio-biochemical phenomena in five diverse cultivars of turnip (Brassica rapa L.). — J. Agron. Crop Sci. 196: 273–285, 2010.Google Scholar
  32. Olsen S.R., Sommers L.E.: Phosphorus. — In: Page A.L. (ed.) Methods of Soil Analysis. Part 2. Pp. 403–429. Agron. ASA, SSSA, Madison 1990.Google Scholar
  33. Qadir M., Qureshi A.S., Cheraghi S.A.M.: Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management. — Land Degrad. Dev. 19: 214–227, 2008.CrossRefGoogle Scholar
  34. Sayed O.H.: Chlorophyll fluorescence as a tool in cereal crop research. — Photosynthetica 41: 321–330, 2003.CrossRefGoogle Scholar
  35. Shahriaripour R., Tajabadi Pour A., Mozaffari V. et al.: Effect of salinity and soil zinc application on growth and chemical composition of pistachio seedlings. — J. Plant Nutr. 33: 1166–1179, 2010.CrossRefGoogle Scholar
  36. Sharma P.N., Tripathi A., Bisht S.S.: Zinc requirement for stomatal opening in cauliflower. — Plant Physiol. 107: 751–756, 1995.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sharma P.N., Bisht S.S., Kumar N.: Effect of zinc deficiency on chlorophyll content, photosynthesis and water relations of cauliflower plants. — Photosynthetica 30: 353–359, 1994.Google Scholar
  38. Shim I.S., Momose Y., Yamamoto A. et al.: Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. — Plant Growth Regul. 39: 285–292, 2003.CrossRefGoogle Scholar
  39. Stevens J., Senaratna T., Sivasithamparam K.: Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. ‘Roma’): associated changes in gas exchange, water relations and membrane stabilisation. — Plant Growth Regul. 49: 77–83, 2006.Google Scholar
  40. Sudhir P., Murthy S.D.S.: Effects of salt stress on basic processes of photosynthesis. — Photosynthetica 42: 481–486, 2004.CrossRefGoogle Scholar
  41. Tattini M., Traversi M.L.: Responses to changes in Ca2+ supply in two Mediterranean evergreens, Phillyrea latifolia and Pistacia lentiscus, during salinity stress and subsequent relief. — Ann. Bot.-London 102: 609–622, 2008.CrossRefGoogle Scholar
  42. Tavallali V., Rahemi M., Eshghi S. et al.: Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedlings. — Turk. J. Agric. For. 34: 349–359, 2010.Google Scholar
  43. Tavallali V., Rahemi M., Maftoun M. et al.: Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. — Sci. Hortic.-Amsterdam 123: 272–279, 2009.CrossRefGoogle Scholar
  44. Tiwari J.K., Munshi A.D., Kumar R. et al.: Effect of salt stress on cucumber: Na+-K+ ratio, osmolyte concentration, phenols and chlorophyll content. — Acta Physiol. Plant. 32: 103–114, 2010.CrossRefGoogle Scholar
  45. Wang H., Liu R.L., Jin J.Y.: Effects of zinc and soil moisture on photosynthetic rate and chlorophyll fluorescence parameters of maize. — Biol. Plantarum 53: 191–194, 2009.CrossRefGoogle Scholar
  46. Webb J.A., Fletcher R.A.: Paclobutrazol protects wheat seedlings from injury due to waterlogging. — Plant Growth Regul. 18: 201–206, 1996.CrossRefGoogle Scholar
  47. Weisany W., Sohrabi Y., Heidari G. et al.: Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). — Plant Omics 5: 60–67, 2012.Google Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  • A. Amiri
    • 1
  • B. Baninasab
    • 1
  • C. Ghobadi
    • 1
  • A. H. Khoshgoftarmanesh
    • 2
  1. 1.Department of Horticulture, College of AgricultureIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Soil Science, College of AgricultureIsfahan University of TechnologyIsfahanIran

Personalised recommendations