Advertisement

Photosynthetica

, Volume 54, Issue 3, pp 405–413 | Cite as

Structural and functional organization of the photosynthetic apparatus in halophytes with different strategies of salt tolerance

  • O. A. Rozentsvet
  • E. S. Bogdanova
  • L. A. Ivanova
  • L. A. Ivanov
  • G. N. Tabalenkova
  • I. G. Zakhozhiy
  • V. N. Nesterov
Original papers

Abstract

The specific features of the structural and functional organisation of the photosynthetic apparatus (PSA) were studied in wild halophytes representing three strategies of salt tolerance: euhalophyte Salicornia perennans, crynohalophyte Limonium gmelinii, and glycohalophyte Artemisia santonica. The sodium content in aboveground parts of the plants corresponded to the strategy of salt tolerance. The photosynthetic cells of the euhalophyte were large and contained a higher number of chloroplasts than those in other species. In contrast, the number of cells per a leaf area unit was lower in S. perennans as compared to cryno- and glycohalophytes. Thereupon, the cell and chloroplast surface area per leaf area unit declined in the following sequence: A. santonica > L. gmelinii > S. perennans. However, the large cells of euhalophyte contained chloroplasts of larger sizes with 4- to 5-fold higher chlorophyll (Chl) content per chloroplast and Chl concentration in chloroplast volume unit. Also, chloroplasts of S. perennans were characterised by the higher content of glyco- and phospholipids. Qualitative composition of fatty acids (FA) in lipids isolated from the chloroplast-enriched fraction was similar in all three species; however, the index of unsaturation of FA was higher in glycohalophyte A. santonica than those in two other species. Under natural condition, PSA of all three halophytes showed high resistance to soil salinity. The results indicated tolerance of PSII to the photodamage in halophytes. The high rate of electron transport through PSII can be important to prevent oxidative damage of PSA in halophytes under strong light and hight temperature in vivo. Thus, the strategy of salt tolerance is provided by both the leaf anatomical structure and the ultrastructure of photosynthetic membranes, which is determined in particular by the specific composition of lipids.

Additional key words

chlorophyll fluorescence mesostructure photoinhibition salt stress water content 

Abbreviations

A

leaf area

Acel

total cell surface areas

Achl

chloroplast surface areas per leaf area

Car

carotenoids

Chl

chlorophyll

DGDG

digalactosyldiacylglycerols

DM

dry mass

ETR

electron transport rate

F0

basic fluorescence level

FA

fatty acids

Fm

maximal fluorescence

FM

fresh mass

Fs

steady-state fluorescence

Fv

variable fluorescence

GL

glycolipids

MGDG

monogalactosyldiacylglycerols

PA

phosphatidic acids

PC

phosphatidylcholines

PE

phosphatidylethanolamines

PG

phosphatidylglycerols

PI

phosphatidylinositols

PL

phospholipid

PSA

photosynthetic apparatus

SQDG

sulfoquinovosyldiacylglycerols

ST

sterols

TL

total lipids

TLC

thin-layer chromatography

UI

unsaturation index of fatty acids

WC

water content

ΦPSII

actual quantum yield of PSII

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams III W.W., Zarter C.R., Much K.E. et al.: Energy dissipation and photoinhibition: a continuum of photoprotection.–In: Demmig-Adams B., Adams III W.W., Mattoo A.K. (ed.): Photoprotection, Photoinhibition, Gene Regulation, and Environment. Pp. 49–64. Springer-Verlag, Dordrecht 2006.CrossRefGoogle Scholar
  2. Albertsson P-A.: A quantitative model of the domain structure of the photosynthetic membrane.–Trends Plant Sci. 6: 349–358, 2001.CrossRefPubMedGoogle Scholar
  3. Amiri B., Assareh M.H., Jafari M. et al.: Effect of salinity on growth, ion content and water status of glasswort (Salicornia herbacea L.).–Caspian J. Env. Sci. 8: 79–87, 2010.Google Scholar
  4. Anderson J.M.: Insights in the consequences of grana stacking of thylakoid membranes in vascular plants: a personal perspective.–Aust. J. Plant Physiol. 26: 625–639, 1999.CrossRefGoogle Scholar
  5. Aziz I., Gul B., Gulzar S., Khan M.A.: Seasonal variations in plant water status of four desert halophytes from semi-arid region of Karachi.–Pak. J. Bot. 43: 587–594, 2011.Google Scholar
  6. Balnokin Y.V., Kurkova E.B., Myasoedov N.A. et al.: Structural and functional state of thylakoids in a halophyte Suaeda altissima before and after disturbance of salt-water balance by extremely high concentrations of NaCl.–Russ. J. Plant Physl+ 51: 905–912, 2004.Google Scholar
  7. Belugin B.V., Zhestkova I.M., Trofimova M.S.: Affinity of PIPaquaporins to sterol-enriched domains in plasma membrane of the cells of etiolated pea seedlings.–Biochem. Suppl. Ser. A 5: 56–63, 2011.CrossRefGoogle Scholar
  8. Bligh E.G., Dyer W.J.: A rapid method of total lipid extraction and purification.–Can. J. Biochem. Phys. 37: 911–917, 1959.CrossRefGoogle Scholar
  9. Daraban I.N., Mihali C.V., Turcus V. et al.: Esem and edax observation on leaf and stem epidermal structures (stomata and salt glands) in Limonium gmelinii (Willd.) Kuntze.–Ann. RSCB 18: 123–130, 2013.Google Scholar
  10. Davy A.J., Bishop G.F., Costa C.S.B.: Salicornia L. (Salicornia pusilla J. Woods, S. ramosissima J. Woods, S. europaea L., S. obscura P.W. Ball & Tutin, S. nitens P.W. Ball & Tutin, S. fragilis P.W. Ball & Tutin and S. dolichostachya Moss).–J. Ecol. 89: 681–707, 2001.CrossRefGoogle Scholar
  11. Flowers T.J., Colmer T.D.: Salinity tolerance in halophytes.–New Phytol. 179: 945–963, 2008.CrossRefPubMedGoogle Scholar
  12. Glenn E.P., Brown J.J., Blumwald E.: Salt tolerance and crop potential of halophytes.–Crit. Rev. Plant Sci. 18: 227–255, 1999.CrossRefGoogle Scholar
  13. Gorham J.: Mechanisms of salt tolerance in halophytes.–In: Choukr-Allah R., Malcolm C.V., Hamdy A. (ed.): Halophytes and Biosaline Agriculture. Pp. 31–53. Marcel Dekker Inc., New York 1996.Google Scholar
  14. Havaux M.: Carotenoids as membrane stabilizers in chloroplasts.–Trends Plant Sci. 3: 147–151, 1998.CrossRefGoogle Scholar
  15. Hirayama O., Mihara M.: Characterization of membrane lipids of higher plants different in salt tolerance.–Agric. Biol. Chem. 51: 3215–3221, 1987.Google Scholar
  16. Hölzl G., Dörman P.: Structure and function of glycoglycerolipids in plants and bacteria.–Prog. Lipid Res. 46: 225–243, 2007.CrossRefPubMedGoogle Scholar
  17. Ivanov L.A., Ronzhina D.A., Ivanova L.A.: Changes in leaf characteristics as indicator of the alteration of functional types of steppe plants along the aridity gradient.–Russ. J. Plant Physl+ 55: 301–307, 2008.CrossRefGoogle Scholar
  18. Ivanov L.A., Ivanova L.A., Ronzhina D.A., Yudina P.K.: Changes in the chlorophyll and carotenoid contents in the leaves of steppe plants along a latitudinal gradient in South Ural–Russ. J. Plant Physl+ 60: 812–820, 2013.CrossRefGoogle Scholar
  19. Ivanova A., Nechev J., Stefanov K.: Effect of soil salinity on the lipid composition of halophyte plants from the sand bar of Pomorie.–Gen. Appl. Plant Physiol. 32: 125–131, 2006.Google Scholar
  20. Ivanova L.A., Pyankov V.I.: Structural adaptation of the leaf mesophyll to shading.–Russ. J. Plant Physl+ 49: 419–432, 2002.CrossRefGoogle Scholar
  21. Jennings D.H.: Halophytes, succulence and sodium in plants–a unified theory.–New Phytol. 67: 899–911, 1968.CrossRefGoogle Scholar
  22. Joyard J., Ferro M., Masselon C. et al.: Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism.–Prog. Lipid Res. 49: 128–158, 2010.CrossRefPubMedGoogle Scholar
  23. Lichtenthaler H.K.: Hlorophylls and carotenoids: pigments of photosyntethetic biomembranes.–Methods Enzymol. 148: 350–382, 1987.CrossRefGoogle Scholar
  24. Li W., Zhang C., Lu Q. et al.: The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa.–J. Plant Physiol. 168: 1743–1752, 2011.CrossRefPubMedGoogle Scholar
  25. Lyons J.M., Weaton T.A., Pratt H.K.: Relationship between the physical natures of mitochondrial membranes.–J. Plant Physiol. 39: 262–268, 1964.CrossRefGoogle Scholar
  26. Ma X.-L., Wang Z.-L., Qi Y.-C. et al.: Isolation of S-adenosylmethionine synthetase gene from Suaeda salsa and its differential expression under NaCl stress.–Acta Bot. Sin. 45: 1359–1365, 2003.Google Scholar
  27. Markovskaya E.F., Sergienko L.A., Starodubtceva A.A.: Pigment apparatus of some species of higher plants of coastal zone of arctic tidal seas.–Fund. Res. 1: 160–163, 2012.Google Scholar
  28. Mizusawa N., Wada H.: The role of lipids in photosystem II.–Biochim. Biophys. Acta 1817: 194–208, 2012.CrossRefPubMedGoogle Scholar
  29. Mokronosov A.T.: [Developmental Aspect of Photosynthesis]. Pp. 196. Nauka, Moscow 1981.Google Scholar
  30. Munns R., Tester M.: Mechanisms of salinity tolerance.–Annu. Rev. Plant Biol. 59: 651–681, 2008.CrossRefPubMedGoogle Scholar
  31. Parida A.K., Das A.B.: Salt tolerance and salinity effects on plants: a review.–Ecotoxicol. Environ. Safe. 60: 324–349, 2005.CrossRefGoogle Scholar
  32. Popova O.F., Slemnev N.N., Popova I.A., Maslova T.G.: Content of pigments of plastids in plants of Gobi and Karakum deserts.–Bot. Zh. SSSR 69: 334–344, 1984.Google Scholar
  33. Ramani B., Zorn H., Papenbrock J.: Quantification and fatty acid profiles of sulfolipids in two halophytes and a glycophyte grown under different salt concentrations.–Z. Naturforsch C 59: 835–842, 2004.CrossRefPubMedGoogle Scholar
  34. Roohi A., Nazish B., et al.: A critical review on halophytes: salt tolerant plants.–J. Med. Plants Res. 5: 7108–7118, 2011.Google Scholar
  35. Rozentsvet O.A., Nesterov V.N., Sinyutina N.F.: The effect of copper ions on the lipid composition of subcellular membranes in Hydrilla verticillata.–Chemosphere 89: 108–113, 2012.CrossRefPubMedGoogle Scholar
  36. Rozentsvet O.A., Nesterov V.N.: Bogdanova E.S. Membraneforming lipids of wild halophytes growing under the conditions of Prieltonie of South Russia.–Phytochemistry 105: 37–42, 2014.CrossRefPubMedGoogle Scholar
  37. Sai Kachout S., Ben Mansoura A., Jaffel K. et al.: The effect of salinity on the growth of the halophyte a Triplex hortensis (Chenopodiaceae).–Appl. Ecol. Environ. Res. 7: 319–332, 2009.CrossRefGoogle Scholar
  38. Sato N.: Roles of the acidic lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution.–J. Plant Res. 117: 495–505, 2004.CrossRefPubMedGoogle Scholar
  39. Schreiber U., Armond P.A.: Heat-induced change of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level.–Biochim. Biophys. Acta 502: 138–151, 1978.CrossRefPubMedGoogle Scholar
  40. Sui N., Li M., Li K. et al.: Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity.–Photosynthetica 48: 623–629, 2010.CrossRefGoogle Scholar
  41. Ushakova S.A., Kovaleva N.P., Gribovskaya T.V. et al.: Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS.–Adv. Space Res. 36: 1349–1353, 2005.CrossRefGoogle Scholar
  42. Vaskovsky V.E., Latyshev N.A.: Modified Jungnickel's reagent for detecting phospholipids and other phosphorus compounds on thin-layer chromatograms.–J. Chromatogr. 115: 246–249, 1975.CrossRefPubMedGoogle Scholar
  43. Voronkova N.M., Burkovskaya E.V., Bezdeleva T.A., Burundukova O.L.: Morphological and biological features of plants related to their adaptation to coastal habitats.–Russ. J. Ecol. 39: 1–7, 2008.CrossRefGoogle Scholar
  44. Yamane Y., Yasuhiro K., Hiroyuki K., Satoh K.: Increases in the fluorescence F0 level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants.–Photosynth. Res. 52: 57–64, 1997.CrossRefGoogle Scholar
  45. Yamamoto Y., Kai S., Ohnishi A. et al.: Quality control of PSII: behavior of PSII in the highly crowded grana thylakoid under excessive light.–Plant Cell Physiol. 55: 1206–1215, 2014.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  • O. A. Rozentsvet
    • 1
  • E. S. Bogdanova
    • 1
  • L. A. Ivanova
    • 2
  • L. A. Ivanov
    • 2
  • G. N. Tabalenkova
    • 3
  • I. G. Zakhozhiy
    • 3
  • V. N. Nesterov
    • 1
  1. 1.Institute of Ecology of the Volga River BasinRussian Academy of SciencesTogliattiRussia
  2. 2.Botanical Garden, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  3. 3.Institute of Biology, Komi Science CentreRussian Academy of SciencesSyktyvkarRussia

Personalised recommendations