, Volume 54, Issue 2, pp 226–233 | Cite as

Different mechanisms of photosynthetic response to drought stress in tomato and violet orychophragmus

  • W. H. Sun
  • Y. Y. Wu
  • X. Y. Wen
  • S. J. Xiong
  • H. G. He
  • Y. Wang
  • G. Q. Lu
Original papers


Carbonic anhydrase (CA) catalyzes reversible hydration of CO2 and it can compensate for the lack of H2O and CO2 in plants under stress conditions. Antioxidative enzymes play a key role in scavenging reactive oxygen species and in protecting plant cells against toxic effects. Tomato represents a stress-sensitive plant while violet orychophragmus belongs to adversity-resistant plants. In order to study the drought responses in tomato and violet orychophragmus plants, CA and antioxidative enzyme activities, photosynthetic capacity, and water potential were determined in plants under drought stress. We found that there were similar change trends in CA activity and drought tolerance in violet orychophragmus, and in antioxidative enzymes and drought tolerance in tomato plants. Basic mechanisms of drought resistance should be identified for understanding of breeding measures in plants under stress conditions.

Additional key words

chlorophyll fluorescence gas exchange Orychophragmus violaceus Solanum lycopersicum 



carbonic anhydrase




intercellular CO2 concentration


transpiration rate


minimal fluorescence yield of the dark-adapted state


maximal fluorescence yield of the dark-adapted state


fresh mass


maximal photochemical efficiency of PSII


stomatal conductance




mild drought


moderate drought

\(O_2^{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{ - } }\)

superoxide radical


violet orychophragmus (Orychophragmus violaceus)


phosphoenolpyruvate carboxylase


net photosynthetic rate


reactive oxygen species


relative water capacity


severe drought


tomato (Solanum lycopersicum)


superoxide dismutase


water-use efficiency


well watered


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi H.: Catalases. — In: Bergmeyer H.U. (ed.): Methods of Enzymatic Analysis, Vol. 2. Pp. 673–677. Academic Press, New York 1974.CrossRefGoogle Scholar
  2. Badger M.: The role of carbonic anhydrase in photosynthetic CO2 concentrating mechanism. — Photosynth. Res. 77: 83–94, 2003.CrossRefPubMedGoogle Scholar
  3. Bradford M.M: Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of proteindye binding. — Anal. Biochem. 72: 248–254, 1976.CrossRefPubMedGoogle Scholar
  4. Cuellar-Ortiz S.M., Arrieta-Montiel M.D.L., Acosta-Gallegos J., Covarrubias A.A.: Relationship between carbohydrate partitioning and drought resistance in common bean. — Plant Cell Environ. 31: 1399–1409, 2008.CrossRefPubMedGoogle Scholar
  5. Fett J.P., Coleman J.R.: Characterization and expression of two cDNAs encoding carbonic anhydrase in Arabidopsis thaliana. — Plant Physiol. 105: 707–713, 1994.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Giannopolitis C.N., Ries S.K.: Superoxide dismutases. I. Occurrence in higher plants. — Plant Physiol. 59: 309–314, 1977.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hemavathi, Upadhyaya C.P., Akula N. et al.: Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. — Biotechnol. Lett. 32: 321–330, 2010.CrossRefPubMedGoogle Scholar
  8. Hu H.H., Boisson-Dernier A., Israelsson-Nordström M. et al.: Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. — Nat. Cell Biol. 12: 87–118, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kaul T., Reddy P.S., Mahanty S. et al.: Biochemical and molecular characterization of stress-induced β-carbonic anhydrase from a C4 plant Pennisetum glaucum. — J. Plant Physiol. 168: 601–610, 2011.CrossRefPubMedGoogle Scholar
  10. Khalifah R.G.: Kinetics and mechanistic implications of CO2 hydration activity of human erythrocyte carbonic anhydrases. — In: Bauer C., Gros, G., Bartels, H. (ed.): Biophysics and Physiology of Carbon Dioxide. Proceedings in Life Science. Pp. 206–215. Springer, Berlin-Heidelberg 1980.CrossRefGoogle Scholar
  11. Lan Y, Mott K.A: Determination of apparent KM values for ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) activase using the spectrophotometric assay of Rubisco activity. — Plant Physiol. 95: 604–609, 1991.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Li J., Lu Y.M., Xue L.X., Xie H.: A structurally novel salt regulated promoter of duplicated carbonic anhydrase gene 1 from Dunaliella salina. — Mol. Biol. Rep. 37: 1143–1154, 2010.CrossRefPubMedGoogle Scholar
  13. Meloni D.A., Gulotta M.R., Martínez C.A., Oliva M.A.: The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. — Braz. J. Plant Physiol. 16: 39–46, 2004.CrossRefGoogle Scholar
  14. Mittler R.: Oxidative stress, antioxidants and stress tolerance. — Trend. Plant Sci. 7: 405–410, 2002.CrossRefGoogle Scholar
  15. Moroney J.V., Ma Y.B., Frey W.D. et al.: The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. — Photosynth. Res. 109: 133–149, 2011.CrossRefPubMedGoogle Scholar
  16. Reddy A.R., Chaitanya K.V., Vivekanandan M.: Droughtinduced responses of photosynthesis and antioxidant metabolism in higher plant. — Plant Physiol. 161: 1189–1202, 2004.CrossRefGoogle Scholar
  17. Reinfelder J.R.: Carbon concentrating mechanism in eukaryotic marine phytoplankton. — Annu. Rev. Mar. Sci. 3: 291–315, 2011.CrossRefGoogle Scholar
  18. Sage R.F., Coleman J.R.: Effects of low atmospheric CO2 on plants: more than a thing of the past. — Trend. Plant Sci. 6: 18–24, 2001.CrossRefGoogle Scholar
  19. Sairam R.K., Srivastava G.C.: Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. — Plant Sci. 162: 897–904, 2002.CrossRefGoogle Scholar
  20. Sun W.H., Duan M., Li F. et al.: Overexpression of tomato tAPX gene in tobacco improves tolerance to high or low temperature stress. — Biol. Plantarum 54: 614–620, 2010.CrossRefGoogle Scholar
  21. Surridge C.: Agricultural biotech: the rice squad. — Nature 416: 576–578, 2002.CrossRefPubMedGoogle Scholar
  22. Tiwari A., Kumar P., Singh S., Ansari S.A.: Carbonic anhydrase in relation to higher plants. — Photosynthetica 43: 1–11, 2005.CrossRefGoogle Scholar
  23. Wu Y.Y., Li X.T., Hao J.C. et al.: [Study on the difference of the activities of carbonic anhydrase in different plants.] — Guihaia 26: 366–369, 2006. [In Chinese]Google Scholar
  24. Zhao S.J., Shi G.A., Dong X.C, et al.: [Techniques of Plant Physiological Experiment.] Pp. 84–85. China Agriculture Science and Technology Press, Beijing 2002. [In Chinese]Google Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  • W. H. Sun
    • 1
  • Y. Y. Wu
    • 2
  • X. Y. Wen
    • 1
  • S. J. Xiong
    • 1
  • H. G. He
    • 1
  • Y. Wang
    • 1
  • G. Q. Lu
    • 1
  1. 1.College of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
  2. 2.Institute of Agricultural EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations