, Volume 54, Issue 2, pp 193–200 | Cite as

Chlorophyll fluorescence upper-to-lower-leaf ratio for determination of irrigation time for Pentas lanceolata

  • C. W. Wu
  • M. C. Lee
  • Y. L. Peng
  • T. Y. Chou
  • K. H. LinEmail author
  • Y. S. ChangEmail author
Original papers


The objective of this study was to use nondestructive measurements as the precise irrigation indices for potted star cluster (Pentas lanceolata). Drought stress was imposed on plants for 0, 3, 5, 7, 12, and 16 d by withholding water. Measurements were conducted on the third leaf counted from the apex (upper leaves) and on the third leaf from the bottom (lower leaves). Within the range of soil water content (SWC) from 10 to 45%, leaf water potential (WP), SWC, and soil matric potential (SMP), chlorophyll fluorescence, photochemical reflectance index (PRI), adjusted normalized difference vegetation index (aNDVI), and the reflectance (R) at 1950 nm (R1950) were measured. The plants reached the temporary wilting point at −3.87 MPa of leaf WP; the maximal fluorescence yield of the light-adapted state (Fm′) ratio of upper-to-lower leaves was 1.7. When the Fm′ ratio was 1.3, it corresponded to lower-leaf WP < −2.27 MPa, SWC < 21%, SMP < −20 kPa, PRI < 0.0443, aNDVI < 0.0301, and R1950 > 8.904; it was the time to irrigate. In conclusion, the Fm′ ratio of upper-to-lower leaves was shown to be a nondestructive predictor of leaf WP and can be used to estimate irrigation timing.

Additional key words

nondestructive technique reflectance spectroscopy rewatering water status water stress 



adjusted normalized difference vegetation index




minimal fluorescence yield of the dark-adapted state


maximal fluorescence yield of the light-adapted state


fluorescence yield at the steady-state


maximal quantum yield of PSII photochemistry


photochemical reflectance index




matric potential


soil water content


water potential


maximum effective quantum yield


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aro E.M., Virgin I., Anderson B.: Photoinhibition of photo-system II. Inactivation, protein damage and turnover. — BBA-Bioenergetics 1143: 113–134, 1993.CrossRefPubMedGoogle Scholar
  2. Augé R.M., Stodola A.J., Moore W. et al.: Comparative dehydration tolerance of foliage of several ornamental crops. — Sci. Hortic.-Amsterdam 98: 511–516, 2003.CrossRefGoogle Scholar
  3. Colom M.R., Vazzana C.: Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. — Environ. Exp. Bot. 49: 135–144, 2003.CrossRefGoogle Scholar
  4. D'Ambrosio N., Arena C., De Santo A. et al.: Temperature response of photosynthesis, excitation energy dissipation and alternative electron sinks to carbon assimilation in Beta vulgaris L. — Environ. Exp. Bot. 55: 248–257, 2006.CrossRefGoogle Scholar
  5. Dawson T.P., Curran P.J., Plummer S.E. et al.: LIBERTY — modeling the effects of leaf biochemical concentration on reflectance spectra. — Remote Sens. Environ. 65: 50–60, 1998.CrossRefGoogle Scholar
  6. Deb S.J., Shukla M.K., Mexal J.G. et al.: Estimating midday leaf and stem water potentials of mature pecan trees from soil water content and climatic parameters. — HortScience 47: 907–916, 2012.Google Scholar
  7. Demmig-Adams B., Adams W.W., Barker D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. — Physiol. Plantarum 98: 253–264, 1996.CrossRefGoogle Scholar
  8. Dillen S.Y., de Beeck M.O., Hufkens K. et al.: Seasonal patterns of foliar reflectance in relation to photosynthetic capacity and color index in two co-occurring tree species, Quercus rubra and Betula papyrifera. — Agric. Forest. Meteorol. 160: 60–68, 2012.CrossRefGoogle Scholar
  9. Filella I., Amaro T., Araus J.L. et al.: Relationship between photosynthetic radiation-use efficiency of barley canopies and the Photochemical Reflectance Index (PRI). — Physiol. Plantarum 96: 211–216, 1996.CrossRefGoogle Scholar
  10. Gallardo M., Jackson L.E., Schulbach K. et al.: Production and water use in lettuces under variable water supply. — Irrig. Sci 16: 125–137, 1996.CrossRefGoogle Scholar
  11. Gao B.C: NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. — Remote Sens. Environ. 58: 257–266, 1996.CrossRefGoogle Scholar
  12. Gogorcena Y., Iturbe-Ormaetxe I., Escuredo P., Becana M.: Antioxidant defenses against activated oxygen in pea nodules subjected to water stress. — Plant Physiol. 108: 753–759, 1995.PubMedPubMedCentralGoogle Scholar
  13. Gulías J., Flexas J., Abadía A. et al.: Photosynthetic responses to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovici-salvatoris, an endemic Balearic species. — Tree Physiol. 22: 687–697, 2002.CrossRefPubMedGoogle Scholar
  14. He J.X., Wang J., Liang H.G. et al.: Effect of water stress on photochemical function and protein metabolism of photo-system II in wheat leaves. — Physiol. Plantarum 93: 771–777, 1995.CrossRefGoogle Scholar
  15. Hirotsu N., Makino A., Yokota S. et al.: The photosynthetic properties of rice leaves treated with low temperature and high irradiance. — Plant Cell Physiol. 46: 1377–1383, 2005.CrossRefPubMedGoogle Scholar
  16. Huang C., Zhao S., Wang L. et al.: Alteration in chlorophyll fluorescence, lipid peroxidation and antioxidant enzymes activities in hybrid ramie (Boehmeria nivea L.) under drought stress. — Aust. J. Crop Sci. 7: 594–599, 2013.Google Scholar
  17. Huang N., Niu Z., Zhan Y. et al.: Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. — Agric. Forest Meteorol. 160: 80–89, 2012.CrossRefGoogle Scholar
  18. Inoue Y., Morinaga S., Shibayama M. et al.: Nondestructive estimation of water status of intact crop leaves based on spectral reflectance measurements. — Jap. J. Crop Sci. 62: 462–469, 1993.CrossRefGoogle Scholar
  19. Jacquemoud S., Ustin S.L., Verdebout J. et al.: Estimating leaf biochemistry using the PROSPECT leaf optical properties model. — Remote Sens. Environ. 56: 194–202, 1996.CrossRefGoogle Scholar
  20. Jia H., Li D.: Relationship between photosystem 2 electron transport and photosynthetic CO2 assimilation responses to irradiance in young apple tree leaves. — Photosynthetica 40: 139–144, 2002.CrossRefGoogle Scholar
  21. Kitao M., Lei T.T., Koike T. et al.: Tradeoff between shade adaptation and mitigation of photoinhibition in leaves of Quercus mongolica and Acer mono acclimated to deep shade. — Tree Physiol. 26: 441–448, 2006.CrossRefPubMedGoogle Scholar
  22. Levizou E., Drilias P., Psaras G.K. et al.: Nondestructive assessment of leaf chemistry and physiology through spectral reflectance measurements may be misleading when changes in trichome density co-occur. — New Phytol. 165: 463–472, 2005.CrossRefPubMedGoogle Scholar
  23. Lilley J.M., Ludlow M.M.: Expression of osmotic adjustment and dehydration tolerance in diverse rice lines. — Field Crop. Res. 48: 185–197, 1996.CrossRefGoogle Scholar
  24. Lu C., Zhang J.: Effects of water stress on photosystem II photochemistry and its thermo stability in wheat plants. — J. Exp. Bot. 50: 1199–1206, 1999.CrossRefGoogle Scholar
  25. Maxwell K., Johnson G.M.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  26. Paknejad F., Nasri M., Tohidi Moghadam H.R. et al.: Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. — J. Biol. Sci. 7: 841–847, 2007.CrossRefGoogle Scholar
  27. Peñuelas J., Filella I., Elvira S. et al.: Reflectance assessment of summer ozone fumigated Mediterranean white pine seedlings. — Environ. Exp. Bot. 35: 299–307, 1995.CrossRefGoogle Scholar
  28. Peñuelas J., Inoue Y.: Reflectance indices indicative of changes in water and pigment contents of peanut and wheat leaves. — Photosynthetica 36: 355–360, 1999.CrossRefGoogle Scholar
  29. Pierce L.L., Running S.W., Riggs G.A. et al.: Remote detection of canopy water stress in soniferous forests using the ns001 thematic mapper simulator and thermal infrared multispectral scanner. — Photogr. Eng. Remote Sens. 56: 579–586, 1990.Google Scholar
  30. Porcar-Castell A., Pfündel E., Korhonen J.F. et al.: A new monitoring PAM fluorometer (MONI-PAM) to study the shortand long-term acclimation of photosystem II in field conditions. — Photosynth. Res. 96: 173–179, 2008.CrossRefPubMedGoogle Scholar
  31. Pukacki P.M., Kaminska-Rozek E.: Effect of drought stress on chlorophyll a fluorescence and electrical admittance of shoots in Norway spruce seedlings. — Trees 19: 539–544, 2005.CrossRefGoogle Scholar
  32. Rahbarian R., Khavari-Nejad R., Ganjeali A. et al.: Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. — Acta Biol. Cracov. Bot. 53: 47–56, 2011.Google Scholar
  33. Razavi F., Pollet B., Steppe K. et al.: Chlorophyll fluorescence as a tool for evaluation of drought stress. — Photosynthetica 46: 631–633, 2008.CrossRefGoogle Scholar
  34. Remorini D., Massai R.: Comparison of water status indicators for young peach trees. — Irrig. Sci. 22: 39–46, 2003.Google Scholar
  35. Richardson A.D., Berlyn G.P., Gregoire T.G. et al.: Spectral reflectance of Picea rubens (Pinaceae) and Abies balsamea (Pinaceae) needles along an elevational gradient, Mt. Moosilauke, New Hampshire. — Am. J. Bot. 88: 667–676, 2001.CrossRefPubMedGoogle Scholar
  36. Riggs G.A., Running S.W.: Detection of canopy water stress in conifers using the airborne imaging spectrometer. — Remote Sens. Environ. 35: 51–68, 1991.CrossRefGoogle Scholar
  37. Rivera-Hernández B., Carrillo-Ávila E., Obrador-Olán J.J. et al.: Morphological quality of sweet corn (Zea mays L.) ears as response to soil moisture tension and phosphate fertilization in Campeche, Mexico. — Agr. Water Manage. 97: 1365–1374, 2010.CrossRefGoogle Scholar
  38. Sadras V.O., Milroy S.P.: Soil-water thresholds for the responses of leaf expansion and gas exchange: A review. — Field Crop. Res. 47: 253–266, 1996.CrossRefGoogle Scholar
  39. Shirke P.A., Pathre U.V.: Diurnal and seasonal changes in photosynthesis and photosystem 2 photochemical efficiency in Prosopis juliflora leaves subjected to natural environmental stress. — Photosynthetica 41: 83–89, 2003.CrossRefGoogle Scholar
  40. Sims D.A., Gamon J.A.: Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features. — Remote Sens. Environ. 84: 526–537, 2003.CrossRefGoogle Scholar
  41. Skotnica J., Matoušková M., Nauš J. et al.: Thermoluminescence and fluorescence study of changes in Photosystem II photochemistry in desiccating barley leaves. — Photosynth. Res. 65: 29–40, 2000.CrossRefPubMedGoogle Scholar
  42. Souza R.P., Machado E.C., Silva J.A.B. et al.: Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. — Environ. Exp. Bot. 51: 45–56, 2004.CrossRefGoogle Scholar
  43. Stylinski C.D., Gamon J.A., Oechel W.C. et al.: Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. — Oecologia 131: 366–374, 2002.CrossRefGoogle Scholar
  44. Suojala-Ahlfors T., Salo T.: Growth and yield of pickling cucumber in different soil moisture circumstances. — Sci. Hortic.-Amsterdam 107: 11–16, 2005.CrossRefGoogle Scholar
  45. Špunda V., Kalina J., Urban O. et al.: Diurnal dynamics of photosynthetic parameters of Norway spruce trees cultivated under ambient and elevated CO2: the reasons of midday depression in CO2 assimilation. — Plant Sci. 168: 1371–1381, 2005.CrossRefGoogle Scholar
  46. Taiz L., Zeiger E.: Assimilation of mineral nutrients. — In: Taiz L., Zeiger E. (ed.): Plant Physiology. Pp. 289–313. Sinauer Assoc., Sunderlands 2006.Google Scholar
  47. Thompson R.B., Gallardo M., Valdez L.C. et al.: Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors. — Agric. Water Manage. 88: 147–158, 2007.CrossRefGoogle Scholar
  48. Wang D., Kang Y., Wan S. et al.: Effect of soil matric potential on tomato yield and water use under drip irrigation condition. — Agric. Water Manage. 87: 180–186, 2007a.CrossRefGoogle Scholar
  49. Wang F.X., Kang Y.H., Liu S.P. et al.: Effects of soil matric potential on potato growth under drip irrigation in the North China Plain. — Agric. Water Manage. 88: 34–42, 2007b.CrossRefGoogle Scholar
  50. Weng J.H., Liao T.S., Hwang M.Y. et al.: Seasonal variation in photosystem II efficiency and photochemical reflectance index of evergreen trees and perennial grasses growing at low and high elevations in subtropical Taiwan. — Tree Physiol. 26: 1097–1104, 2006.CrossRefPubMedGoogle Scholar
  51. Whitehead D., Boelman N.T., Turnbull M.H. et al.: Photosynthesis and reflectance indices for rainforest species in ecosystems undergoing progression and retrogression along a soil fertility chronosequence in New Zealand. — Oecologia 144: 233–244, 2005.CrossRefPubMedGoogle Scholar
  52. Williams L.E., Baeza P., Vaughn P. et al.: Midday measurements of leaf water potential and stomatal conductance are highly correlated with daily water use of Thompson Seedless grapevines. — Irrig. Sci. 30: 201–212, 2012.CrossRefGoogle Scholar
  53. Zou X., Shi J., Hao L. et al.: In vivo noninvasive detection of chlorophyll distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging. — Anal. Chim. Acta. 706: 105–112, 2011.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  1. 1.Department of Horticulture and Landscape ArchitectureNational Taiwan UniversityTaipeiTaiwan
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Department of Horticulture and BiotechnologyChinese Culture UniversityTaipeiTaiwan

Personalised recommendations