Advertisement

Photosynthetica

, Volume 54, Issue 2, pp 219–225 | Cite as

Effects of solar UV radiation and temperature on morphology and photosynthetic performance of Chaetoceros curvisetus

  • W. Guan
  • X. Peng
  • S. Lu
Original papers

Abstract

This study investigated the effect of solar ultraviolet radiation (UVR) and temperature on a chain length and photosynthetic performance of diatom Chaetorceros curvisetus. The cells were cultured in large quartz tubes and exposed to PAR, PAR + UV-A (PA), or PAR + UV-A + UV-B (PAB) radiation at 20°C and 28°C for six days, respectively. After recovery for 1 h, the cells were exposed again to three different radiations for 1 h. Then, a change in the photochemical efficiency (FPSII) was examined and UVR-induced photoinhibition was calculated. The percentage of long chains (more than five single cells per chain) in C. curvisetus significantly increased from 8.2% (PAR) to 38.9% (PAB) at 20°C; while it was not notably affected at 28°C. Mycosporine-like amino acids (MAAs) concentration obviously increased by irradiance increment from PAR to PAB at 20°C. Chlorophyll (Chl) a concentration significantly declined with increasing irradiance at 20°C. Both MAAs and Chl a concentrations were not obviously changed by irradiance at 28°C. Before and after reexposure, FPSII was significantly reduced both at 20°C and 28°C. UVR-induced photoinhibition at 20°C (39%) was higher than that at 28°C (30.9%). Solar UV radiation, especially UV-B, could significantly influence the percentage of long chains of C. curvisetus, especially at low temperature. UVR-induced photoinhibition can be alleviated by higher temperatures.

Additional key words

photochemical efficiency phytoplankton solar ultraviolet radiation 

Abbreviations

Chl

chlorophyll

MAAs

mycosporine-like amino acids

PA

photosynthetically active radiation plus UV-A radiation

PAB

photosynthetically active radiation plus UV-A and UV-B radiation

PUFA

polyunsaturated fatty acids

UVR

ultraviolet radiation

FPSII

photochemical efficiency of PSII

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An M., Mou S., Zhang X. et al.: Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L. - Bioresource Technol. 134: 151–157, 2013.CrossRefGoogle Scholar
  2. Barrett J., Jeffrey S.: Chlorophyllase and formation of an atypical chlorophyllide in marine algae. — Plant Physiol. 39: 44–47, 1964.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beardall J., Berman T., Markager S. et al.: The effects of ultraviolet radiation on respiration and photosynthesis in two species of microalgae. — Can. J. Fish. Aquat. Sci. 54: 687–696, 1997.CrossRefGoogle Scholar
  4. Beardall J., Raven J.A.: The potential effects of global climate change on microalgal photosynthesis, growth and ecology. — Phycologia 43: 26–40, 2004.CrossRefGoogle Scholar
  5. Bornman J.F., Vogelmann T.C.: Effect of UV-B radiation on leaf optical properties measured with fibre optics. — J. Exp. Bot. 42: 547–554, 1991.CrossRefGoogle Scholar
  6. Buma A., Zemmelink H., Sjollema K. et al.: UVB radiation modifies protein and photosynthetic pigment content, volume and ultrastructure of marine diatoms. — Marine Ecol. Prog. Ser. 142: 47–54, 1996.CrossRefGoogle Scholar
  7. Cohen Z., Vonshak A., Richmond A.: Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rate. — J. Phycol. 24: 328–332, 1988.Google Scholar
  8. Dodson V.J., Mouget J.L., Dahmen J.L. et al.: The long and short of it: temperature-dependent modifications of fatty acid chain length and unsaturation in the galactolipid profiles of the diatoms Haslea ostrearia and Phaeodactylum tricornutum. — Hydrobiologia 727: 95–107, 2014.CrossRefGoogle Scholar
  9. Friso G.., Vass I., Spetea C. et al.: UV-B-induced degradation of the D1 protein in isolated reaction centres of Photosystem II. — BBA-Bioenergetics 1231: 41–46, 1995.CrossRefGoogle Scholar
  10. Gao K., Li P., Watanabe T. et al.: Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis and DNA of Arthrospira (Spirualina) plantensis (Cyanophyta). — J Phycol. 44: 777–786, 2008.CrossRefPubMedGoogle Scholar
  11. Gao K., Wu Y., Li G. et al.: Solar UV radiation drives CO2 fixation in marine phytoplankton: a double-edged sword. — Plant Physiol. 144: 54–59, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gehrke C.: Impacts of enhanced ultraviolet-B radiation on mosses in a subarctic heath ecosystem. — Ecology 80: 1844–1851, 1999.CrossRefGoogle Scholar
  13. Genty B., Harbinson J., Baker N.: Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and nonrespiratory conditions. — Plant Physiol. Bioch. 28: 1–10, 1990.Google Scholar
  14. Gong H., Nilsen S.: Effect of temperature on photoinhibition of photosynthesis, recovery, turnover of the 32 kD chloroplast protein in Lemna gibba. — J. Plant Physiol. 135: 9–14, 1989.CrossRefGoogle Scholar
  15. Greenberg B.M., Wilson M.I., Huang X.D. et al.: The effects of ultraviolet-B radiation on higher plants.–In: Wang W.W., Gorsuch J.W., Hughes J. (ed.): Plants for Environmental Studies. Pp.1–35. CRC press LLC., Boca Raton 1997.Google Scholar
  16. Guan W., Gao K.: Enhanced calcification ameliorates the negative effects of UV radiation on photosynthesis in the calcifying phytoplankter Emiliania huxleyi. — Chinese Sci. Bull. 55: 588–593, 2010a.CrossRefGoogle Scholar
  17. Guan W., Gao K.: Impacts of UV radiation on photosynthesis and growth of the coccolithophore Emiliania huxleyi (Haptophyceae). — Environ. Exp. Bot. 67: 502–508, 2010b.CrossRefGoogle Scholar
  18. Guan W., Li P., Jian J. et al.: Effects of solar ultraviolet radiation on photochemical efficiency of Chaetoceros curvisetus (Bacillariophyceae). — Acta. Physiol. Plant. 33: 979–986, 2011.CrossRefGoogle Scholar
  19. Guillard R.R., Ryther J.H.: Studies of marine planktonic diatoms.I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. — Can. J. Microbiol. 8: 229–239, 1962.CrossRefPubMedGoogle Scholar
  20. Häder D.P., Kumar H., Smith R. et al.: Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. — Photoch. Photobio. Sci. 6: 267–285, 2007.CrossRefGoogle Scholar
  21. Häder D.P., Lebert M., Marangoni R. et al.: ELDONET - European Light Dosimeter Network hardware and software. — J. Photoch. Photobio. B 52: 51–58, 1999.CrossRefGoogle Scholar
  22. Helbling E.W., Chalker B.E., Dunlap W.C. et al.: Photoacclimation of Antarctic marine diatoms to solar ultraviolet radiation. — J. Exp. Mar. Biol. Ecol. 204: 85–101, 1996.CrossRefGoogle Scholar
  23. Jansen M.A., Gaba V., Greenberg B.M.: Higher plants and UVB radiation: balancing damage, repair and acclimation. — Trends Plant Sci. 3: 131–135, 1998.CrossRefGoogle Scholar
  24. Karthikeyan P., Manimaran K., Sampathkumar P. et al.: Growth and nutrient removal properties of the diatoms, Chaetoceros curvisetus and C. simplex under different nitrogen sources. — Appl. Water Sci. 3: 49–55, 2013.CrossRefGoogle Scholar
  25. Kneeland J., Hughen K., Cervino J. et al.: Lipid biomarkers in Symbiodinium dinoflagellates: new indicators of thermal stress. — Coral Reefs 32: 923–934, 2013.CrossRefGoogle Scholar
  26. Leu E., Faeroevig P.J., Hessen D.O.: UV effects on stoichiometry and PUFAs of Selenastrum capricornutum and their consequences for the grazer Daphnia magna. — Freshwater Biol. 51: 2296–2308, 2006a.CrossRefGoogle Scholar
  27. Leu E., Wängberg S.Å., Wulff A. et al.: Effects of changes in ambient PAR and UV radiation on the nutritional quality of an Arctic diatom (Thalassiosira antarctica var. borealis). — J. Exp. Mar. Biol. Ecol. 337: 65–81, 2006b.CrossRefGoogle Scholar
  28. Mühling M., Harris N., Belay A. et al.: Reversal of helix orientation in the Cyanobacterium arthrospira. — J. Phycol. 39: 360–367, 2003.CrossRefGoogle Scholar
  29. Marwood C.A., Smith R.E., Furgal J.A. et al.: Photoinhibition of natural phytoplankton assemblages in Lake Erie exposed to solar ultraviolet radiation. — Can. J. Fish. Aquat. Sci. 57: 371–379, 2000.CrossRefGoogle Scholar
  30. Ogata K., Yuki T., Hatakeyama M. et al.: All-atom molecular dynamics simulation of photosystem II embedded in thylakoid membrane. — J. Am. Chem. Soc. 135: 15670–15673, 2013.CrossRefPubMedGoogle Scholar
  31. Patrick R.: The effects of increasing light and temperature on the structure of diatom communities. — Limnol. Oceanog. 16: 405–421, 1971.CrossRefGoogle Scholar
  32. Porra R.J., Thompson W.A., Kriedemann P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrometry. — Biochim. Biophys. Acta 975: 384–394, 1989.CrossRefGoogle Scholar
  33. Reiter R.J., Tan D.X., Galano A.: Melatonin reduces lipid peroxidation and membrane viscosity. — Front Physiol. 5: 377, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Roos J.C., Vincent W.F.: Temperature dependence of UV radiation effects on Antarctic cyanobacteria. — J. Phycol. 34: 118–125, 1998.CrossRefGoogle Scholar
  35. Shatwell T., Köhler J., Nicklisch A.: Temperature and photoperiod interactions with phosphorus-limited growth and competition of two diatoms. — PLoS One 9: e102367, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sinha R.P., Häder D.P.: UV-protectants in cyanobacteria. — Plant Sci. 174: 278–289, 2008.CrossRefGoogle Scholar
  37. Smayda T.J., Boleyn B.J.: Experimental observations on the flotation of marine diatoms. III. Bacteriastrum hyalinum and Chaetoceros lauderi. — Limnol. Oceanogr. 11: 35–43, 1966.CrossRefGoogle Scholar
  38. Takabayashi M., Lew K., Johnson A. et al.: The effect of nutrient availability and temperature on chain length of the diatom, Skeletonema costatum. — J. Plankton Res. 28: 831–840, 2006.CrossRefGoogle Scholar
  39. Verity P.G.: Effects of temperature, irradiance, and daylength on the marine diatom leptocylindrus danicus cleve. I. Photosynthesis and cellular composition. — J. Exp. Mar. Biol. Ecol. 55: 79–91, 1981.CrossRefGoogle Scholar
  40. Vonshak A.: Outdoor mass production of Spirulina: the basic concept. — In: Vonshak A. (ed.): Spirulina Platensis Arthrospira: Physiology, Cell-biology and Biotechnology. Pp. 79–99. CRC Press LLC., London 1997.Google Scholar
  41. Wu H., Gao K., Villafañe V.E. et al.: Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. — Appl. Environ. Microb. 71: 5004–5013, 2005.CrossRefGoogle Scholar
  42. Wu H., Gao K., Wu H.: Responses of a marine red tide alga Skeletonema costatum (Bacillariophyceae) to long-term UV radiation exposures. — J. Photoch. Photobio. B 94: 82–86, 2009.CrossRefGoogle Scholar
  43. Zheng Y., Gao K.: Impacts of solar UV radiation on the photosynthesis, growth, and UV-absorbbing compounds in Gracilaria lemaneiformis (Rhodophyta) grown at different nitrate concentrations. — J. Phycol. 45: 314–323, 2009.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  1. 1.Department of Marine Biotechnology, School of Life SciencesWenzhou Medical UniverisityWenzhou, ZhejiangChina
  2. 2.Zhejiang Mariculture Research InstituteWenzhouChina
  3. 3.Research Center for Harmful Algae and Aquatic EnvironmentJinan UniversityGuangzhouChina

Personalised recommendations