, Volume 54, Issue 1, pp 152–157 | Cite as

An improved method for the simultaneous determination of photosynthetic O2 evolution and CO2 consumption in Rhizophora mucronata leaves

Brief Communication


The photosynthetic gas-exchange has been assessed traditionally either as O2 evolution or CO2 consumption. In this study, we used a liquid-phase O2 electrode combined with CO2 optodes to examine simultaneously photosynthesis in intact leaves of mangrove Rhizophora mucronata. We verified suitable conditions for leaf photosynthetic rates by assessing pH levels and NaHCO3 concentrations and compared these to the gas-exchange method at various PAR levels. The photosynthetic rate in response to pH exhibited a similar pattern both for O2 evolution and CO2 consumption, and higher rates were associated with intermediate pH compared with low and high pH values. The net photosynthetic quotient (PQ) of R. mucronata leaves ranged from 1.04–1.28. The PQ values, which were never lesser than 1, suggested that photorespiration did not occur in R. mucronata leaves under aqueous conditions. The similar maximum photosynthetic rates suggested that all measurements had a high capacity to adjust the photosynthetic apparatus under a light saturation condition. The simultaneous measurements of O2 evolution and CO2 consumption using the Clark oxygen electrode polarographic sensor with the CO2 optode sensor provided a simple, stable, and precise measurement of PQ under aqueous and saturated light conditions.

Additional key words

carbon dioxide consumption oxygen evolution photosynthetic performance 



light-saturated photosynthetic rate


net photosynthetic rate


photosynthetic quotient


ribulose- 1,5-bisphosphate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2015_166_MOESM1_ESM.pdf (239 kb)
Supplementary material, approximately 239 KB.


  1. Adamec L.: Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa. — Aquat. Bot. 59: 297–306, 1997.CrossRefGoogle Scholar
  2. Berge T., Daugbjerg N., Hansen P.J. et al.: Effect of lowered pH on marine phytoplankton growth rates. — Mar. Ecol. Prog. Ser. 416: 79–91, 2010.CrossRefGoogle Scholar
  3. Berggren M., Lapierre J.F., Giorgio P.A.: Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. — ISME J. 6: 984–993, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brown S.: Photosynthesis and respiration in leaf slices. — Biochem. Educ. 26: 164–167, 1998.CrossRefGoogle Scholar
  5. Chen C.Y., Durbin E.G.: Effects of pH on the growth and carbon uptake of marine phytoplankton. — Mar. Ecol. Prog. Ser. 109: 83–94, 1994.CrossRefGoogle Scholar
  6. Chisholm J.R.M.: Photosynthesis, calcification, and photoadaptation in reef-building crustose corraline algae on the great Barrier Reef. — PhD. Thesis. Pp. 223. James Cook University of North Queensland, Townsville 1998.Google Scholar
  7. Espie G.S., Colman B.: Inorganic carbon uptake during photosynthesis. — Plant Physiol. 80: 870–876, 1986.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Falkowski P.G., Raven J.A.: Aquatic Photosynthesis. Pp. 375. Blackwell Scientific Publishers, Oxford, London 1997.Google Scholar
  9. Gansert D., Burgdorf M., Lösch R.: A novel approach to the in situ measurement of oxygen concentrations in the sapwood of woody plants. — Plant Cell Environ. 24: 1055–1064, 2001.CrossRefGoogle Scholar
  10. Gevaert F., Delebecq G., Menu D. et al.: A fully automated system for measurements of photosynthetic oxygen exchange under immersed conditions: an example of its use in Laminaria digitata (Heterokontophyta: Phaeophyceae). — Limnol. Oceanogr.-Meth. 9: 361–379, 2011.CrossRefGoogle Scholar
  11. Glud R.N., Wenzhöfer F., Tengberg A. et al.: Distribution of oxygen in surface sediments from central Sagami Bay, Japan: in situ measurements by microelectrodes and planar optodes. — Deep-Sea Res. I 52: 1974–1987, 2005.CrossRefGoogle Scholar
  12. Ishii R., Yamagishi T., Murata Y.: On a method for measuring photosynthesis and respiration of leaf slices with an oxygen electrode. — Japan. J. Crop. Sci. 46: 53–57, 1977.CrossRefGoogle Scholar
  13. Isobe K., Koba K., Ueda S. et al.: A simple and rapid GC/MS method for the simultaneous determination of gaseous metabolites. — J. Microbiol. Meth. 84: 46–51, 2011.CrossRefGoogle Scholar
  14. Kawamitsu Y., Boyer J.S.: Photosynthesis and carbon storage between tides in a brown alga, Fucus vesiculosus. — Mar. Biol. 133: 361–369, 1999.CrossRefGoogle Scholar
  15. Laws E.A., Landry M.R., Barber R.T. et al.: Carbon cycling in primary production bottle incubations: inferences from grazing experiments and photosynthetic studies using 14C and 18O in the Arabian Sea. — Deep-Sea Res. II 47: 1339–1352, 2000.CrossRefGoogle Scholar
  16. Maberly S.C., Spence D.H.N.: Photosynthetic inorganic carbon use by freshwater plants. — J. Ecol. 71: 705–724, 1983.CrossRefGoogle Scholar
  17. Moore R.T., Miller P.C., Ehlinger J. et al.: Seasonal trends in gas exchange characteristics of three mangrove species. — Photosynthetica 7: 387–394, 1973.Google Scholar
  18. Nielsen S.L., Nielsen H.D.: Pigments, photosynthesis and photoinhibition in two amphibious plants: consequences of varying carbon availability. — New Phytol. 170: 311–319, 2006.CrossRefPubMedGoogle Scholar
  19. Okimoto Y., Nose A., Katsuta Y. et al.: Gas exchange analysis for estimating net CO2 fixation capacity of mangrove (Rhizophora stylosa) forest in the mouth of river Fukido, Ishigaki Island, Japan. — Plant Prod. Sci. 10: 303–313, 2007.CrossRefGoogle Scholar
  20. Okimoto Y., Nose A., Ikeda, K. et al.: An estimation of CO2 fixation capacity in mangrove forest using two methods of CO2 gas exchange and growth curve analysis. — Wetl. Ecol. Manag. 16: 155–171, 2008.CrossRefGoogle Scholar
  21. Pierini S.A., Thomaz S.M.: Effects of inorganic carbon source on photosynthetic rates of Egeria najas Planchon and Egeria densa Planchon (Hydrocharitaceae). — Aquat. Bot. 78: 135–146, 2004.CrossRefGoogle Scholar
  22. Riebesell U., Schulz K.G., Bellerby R.G.J. et al.: Enhanced biological carbon consumption in a high CO2 ocean. — Nature 450: 545–548, 2007.CrossRefPubMedGoogle Scholar
  23. Rosenberg G., Littler D.S., Littler M.M. et al.: Primary production and photosynthetic quotients of seaweed from Sao Paulo State, Brazil. — Bot. Mar. 38: 369–377, 1995.CrossRefGoogle Scholar
  24. Shevela D., Eaton-Rye J.J., Shen J. et al.: Photosystem II and the unique role of bicarbonate: A historical perspective. — Biochim. Biophys. Acta 1817: 1134–1151, 2012.CrossRefPubMedGoogle Scholar
  25. Sipior J., Eichhorn L.R., Lakowicz J.R. et al.: Phase fluorometric optical carbon dioxide gas sensor for fermentation off-gas monitoring. — Biotechnol. Progr. 12: 266–271, 1996.CrossRefGoogle Scholar
  26. Sobrado M.A.: Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. — Photosynthetica 43: 217–221, 2005.CrossRefGoogle Scholar
  27. Stemler A.J.: The bicarbonate effect, oxygen evolution, and the shadow of Otto Warburg. — Photosynth. Res. 73: 177–183, 2002.CrossRefPubMedGoogle Scholar
  28. Suzumura M., Miyajima T., Hata H. et al.: Cycling of phosphorus maintains the production of microphytobenthic communities in carbonate sediments of a coral reef. — Limnol. Oceanogr. 47: 771–781, 2002.CrossRefGoogle Scholar
  29. Taddei D., Cuet P., Frouin P. et al.: Low community photosynthetic quotient in coral reef sediments. — CR Biol. 331: 668–677, 2008.CrossRefGoogle Scholar
  30. Ulqodry T.Z., Matsumoto F., Okimoto Y. et al.: Study on photosynthetic responses and chlorophyll fluorescence in Rhizophora mucronata seedlings under shade regimes. — Acta Physiol. Plant. 36: 1903–1917, 2014.CrossRefGoogle Scholar
  31. Warkentin M., Freese H.M., Karsten U. et al.: New and fast method to quantify respiration rates of bacterial and plankton communities in freshwater ecosystems by using optical oxygen sensor spots. — Appl. Environ. Microb. 73: 6722–6729, 2007.CrossRefGoogle Scholar
  32. Williams P.J.L., Robertson J.E.: Overall planktonic oxygen and carbon dioxide metabolisms: the problem of reconciling observations and calculations of photosynthetic quotients. — J. Plankton Res. 13: 153–169, 1991.Google Scholar
  33. Wu Z.-H., Yang C.-W., Yang M.-Y.: Photosynthesis, photosystem II efficiency, amino acid metabolism and ion distribution in rice (Oryza sativa L.) in response to alkaline stress. — Photosynthetica 52: 157–160, 2014.CrossRefGoogle Scholar
  34. Wydrzynski T., Govindjee: New site of bicarbonate effect in photosystem II of photosynthesis-evidence from chlorophyll fluorescence transients in spinach chloroplasts. — Biochim. Biophys. Acta 387: 403–408, 1975.CrossRefPubMedGoogle Scholar
  35. Zimmerman R.C., Cabello-Pasini A., Alberte R.S.: Modeling daily production of aquatic macrophytes from irradiance measurements: a comparative analysis. — Mar. Ecol. Prog.Ser. 114: 185–96, 1994.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  1. 1.The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
  2. 2.Faculty of AgricultureSaga UniversitySagaJapan
  3. 3.Department of Marine ScienceSriwijaya UniversitySouth SumateraIndonesia

Personalised recommendations