Advertisement

Photosynthetica

, Volume 53, Issue 3, pp 455–463 | Cite as

Responses of gas exchange, chlorophyll synthesis and ROS-scavenging systems to salinity stress in two ramie (Boehmeria nivea L.) cultivars

  • C. -J. Huang
  • G. Wei
  • Y. -C. Jie
  • J. -J. Xu
  • S. -Y. Zhao
  • L. -C. Wang
  • S. A. Anjum
Original Papers

Abstract

Ramie (Boehmeria nivea L.) is an important crop that serves as fine fiber material, high protein feedstuff, and valuable herbal medicine in China. However, increasing salinity in soil limits the productivity. We investigated in a greenhouse experiment responses to salinity in two ramie cultivars, Chuanzhu-12 (salt-tolerant cultivar, ST) and Xiangzhu-2 (salt-sensitive cultivar, SS), to elucidate the salt tolerance mechanism of this species. Salinity stress substantially reduced both chlorophyll and carotenoid contents. In addition, net photosynthesis, transpiration rate, stomatal conductance, intercellular CO2 concentration, and the ratio of intercellular CO2 to ambient CO2 were affected, less in ST. Nevertheless, salinity stress markedly improved water use efficiency and intrinsic water use efficiency in both species. Moreover, relative water contents, soluble proteins, and catalase activity were substantially impaired, while proline accumulation and superoxide dismutase activity were enhanced substantially, more in ST. Furthermore, noteworthy increase in peroxidase activity and decrease in malondialdehyde content was recorded in ST, whereas, in SS, these attributes changed conversely. Overall, the cultivar ST exhibited salt tolerance due to its higher photosynthetic capacity, chlorophyll content, antioxidative enzyme activity, and nonenzymatic antioxidants, as well as reduced lipid peroxidation and maintenance of the tissue water content. This revealed the salt tolerance mechanism of ramie plants for adaptation to salt affected soil.

Additional key words

abiotic stress photosynthesis pigments lipid peroxidation antioxidant enzymes 

Abbreviations

Car

carotenoids

CAT

catalase

Chl a

chlorophyll

Ci

intercellular CO2

Ci/Ca

intercellular CO2 to ambient CO2 concentration ratio

E

transpiration rate

gs

stomatal conductance

MDA

malondialdehyde

PN

net photosynthesis

POD

peroxidase

RWC

relative water content

ROS

reactive oxygen species

SOD

superoxide dismutase

SS

salt-sensitive cultivar

ST

salt-tolerant cultivar

WUE

water-use efficiency

WUEi

intrinsic water-use efficiency

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apel K., Hirt H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.PubMedCrossRefGoogle Scholar
  2. Arnon D. T.: Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bates L. S., Waldren R. P., Teare I. D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  4. Bradford M. M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Annal. Biochem. 72: 248–254, 1976.CrossRefGoogle Scholar
  5. Chen C., Dickman M. B.: Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. — P. Natl. Acad. Sci. USA 102: 3459–3464, 2005.CrossRefGoogle Scholar
  6. Cha-um S., Kirdmanee C.: Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. — Pak. J. Bot. 41: 87–98, 2009.Google Scholar
  7. De Vos C. H. R., Schat H., De Waal M. A. M. et al.: Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. — Physiol. Plantarum 82: 523–528, 1991.CrossRefGoogle Scholar
  8. Gill S. S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Biochem. 48: 909–930, 2010.PubMedCrossRefGoogle Scholar
  9. Gossett D. R., Millhollon E. P., Lucas M. C.: Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. — Crop Sci. 34: 706–714, 1994.CrossRefGoogle Scholar
  10. Hichem H., Ei Naceur A., Mounir D.: Effects of salt stress on photosynthesis, PSII photochemistry and thermal energy dissipation in leaves of two corn (Zea mays L.) varieties. — Photosynthetica 47: 517–526, 2009.CrossRefGoogle Scholar
  11. Hu L. X., Li H. Y., Pang H. C. et al.: Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. — J. Plant Physiol. 169: 146–156, 2012.PubMedCrossRefGoogle Scholar
  12. Huang C. J., Wei G., Jie Y. C. et al.: Effects of concentrations of sodium chloride on photosynthesis, antioxidative enzymes, growth and fiber yield of hybrid ramie. — Plant Physiol. Biochem. 76: 86–93, 2014.PubMedCrossRefGoogle Scholar
  13. Huang K. L., Lai Y. K., Lin C. C. et al.: Inhibition of hepatitis B virus production by Boehmeria nivea root extract in HepG2 2.2.15 cells. — World J. Gastroentero. 12: 5721–5725, 2006.Google Scholar
  14. Huang Y., Bie Z. L., Liu Z. X. et al.: Improve cucumber photosynthetic capacity under NaCl stress by grafting on to two salt tolerant pumpkin rootstocks. — Biol. Plantarum 55: 285–290, 2011.CrossRefGoogle Scholar
  15. Jiang Q. Z., Roche D., Monaco T. A. et al.: Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. — Field Crop. Res. 96: 269–278, 2006.CrossRefGoogle Scholar
  16. Kong-Ngern K., Daduang S., Wongkham C. et al.: Protein profiles in response to salt stress in leaf sheaths of riceseedlings. — Sci. Asia 31: 403–408, 2005.CrossRefGoogle Scholar
  17. Knox J. P., Dodge A. O.: Singlet oxygen and plants. — Phytochemistry 24: 889–896, 1985.CrossRefGoogle Scholar
  18. Khan N. A., Nazar R., Anjum N. A.: Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. — Sci. Hortic.-Amsterdam 122: 455–460, 2009.CrossRefGoogle Scholar
  19. Lichtenthaler H. K., Wellburn A. R.: Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. — Biochem. Soc. T. 63: 591–592, 1983.Google Scholar
  20. Läuchli A., Grattan S. R.: Plant growth and development under salinity stress. — In: M.A. Jenks et al. (ed.): Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Pp. 1–32. Springer, Dordrecht 2007.CrossRefGoogle Scholar
  21. Lee Y. R., Nho J. W., Hwang I. G., et al.: Chemical composition and antioxidant activity of ramie leaf (Boehmeria nivea L.). — Food Sci. Biotechnol. 18: 1096–1099, 2009.Google Scholar
  22. Li G., Wan S. W., Zhou J. et al.: Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. — Ind. Crop Prod. 31: 13–19, 2010.CrossRefGoogle Scholar
  23. Lin C. C., Yen M. H., Lo T. S. et al.: The anti-inflammatory and liver protective effects of Boehmeria nivea and B. nivea subsp. nippononivea in rats. — Phytomedicine 4: 301–308, 1997.PubMedCrossRefGoogle Scholar
  24. Liu F. H.: [Sampling techniques in test of net photosynthetic rate of plant cultivars, an example from ramie (Boehmeria nivea L.)]. — J. Yunnan Univ. 32: 221–226, 2010. [In Chinese]Google Scholar
  25. Meloni D. A., Oliva M. A., Martinez C. A. et al.: Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. — Environ. Exp. Bot. 49: 69–76, 2003.CrossRefGoogle Scholar
  26. Meng H. B., Jiang S. S., Hua S. J. et al.: Comparison between a tetraploid turnip and its diploid progenitor (Brassica rapa L.): the adaptation to salinity stress. — Agr. Sci. China 10: 363–375, 2011.CrossRefGoogle Scholar
  27. Mundree S. G., Baker B., Mowla S. et al.: Physiological and molecular insights into drought tolerance. — Afr. J. Biotechnol. 1: 28–38, 2002.CrossRefGoogle Scholar
  28. Munir S., Siddiqi E. H., Bhatti K. H. et al.: Assessment of intercultivar variations for salinity tolerance in winter radish (Raphanus sativus L.) using photosynthetic attributes as effective selection criteria. — World Appl. Sci. J. 21: 384–388, 2013.Google Scholar
  29. Munns R., James R. A., Läuchli A.: Approaches to increasing the salt tolerance of wheat and other cereals. — J. Exp. Bot. 57: 1025–1043, 2006.PubMedCrossRefGoogle Scholar
  30. Panda S. K., Khan M. H.: Growth, oxidative damage and antioxidant responses in greengram (Vigna radiata L.) under short-term salinity stress and its recovery. — J. Agron. Crop. Sci. 195: 442–454, 2009.CrossRefGoogle Scholar
  31. Pérez-López U., Robredo A., Lacuesta M., et al.: The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. — Physiol. Plantarum 135: 29–42, 2009.CrossRefGoogle Scholar
  32. Rhodes D., Samaras Y.: Genetic control of osmoregulation in plants. — In: K. Strange (ed.): Cellular and Molecular Physiology of Cell Volume Regulation. Pp. 347–361. CRC Press, Boca Raton 1994.Google Scholar
  33. Rout N. P., Shaw B. P.: Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. — Plant Sci. 160: 415–423, 2001.PubMedCrossRefGoogle Scholar
  34. Sabir P., Ashraf M., Akram N. A.: Accession variation for salt tolerance in proso millet (Panicum miliaceum L.) using leaf proline content and activities of some key antioxidant enzymes. — J. Agron. Crop Sci. 197: 340–347, 2011.CrossRefGoogle Scholar
  35. Sadder M. T., Anwar F., Al-Doss A. A.: Gene expression and physiological analysis of Atriplex halimus (L.) under salt stress. — Aust. J. Crop Sci. 7: 112–118, 2013.Google Scholar
  36. Shaheen H. L., Shahbaz M.: Salt-induced effects on some key morpho-physiological attributes of cotton (Gossypium hirsutum L.) at various growth stages. — Soil Environ. 31: 125–133, 2012.Google Scholar
  37. Sharma P. K., Hall D. O.: Changes in carotenoid composition and photosynthesis in sorghum under high light and salt stresses. — J. Plant. Physiol. 140: 661–666, 1992.CrossRefGoogle Scholar
  38. Smirnoff N., Cumbes Q. J.: Hydroxyl radical scavenging activity of compatible solutes. — Phytochemistry 28: 1057–1060, 1989.CrossRefGoogle Scholar
  39. Tian X. Y., Xu M., Deng B. et al.: The effects of Boehmeria nivea (L.) Gaud on embryonic development: In vivo and in vitro studies. — J. Ethnopharmacol. 134: 393–398, 2011.PubMedCrossRefGoogle Scholar
  40. Teisseire H., Guy V.: Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). — Plant Sci. 153: 65–72, 2000.CrossRefGoogle Scholar
  41. Upadhyaya A., Sankhla D., Davis T. D. et al.: Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. — J. Plant Physiol. 121: 453–461, 1985.CrossRefGoogle Scholar
  42. Wang W., Vinocur B., Altman A.: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. — Planta 218: 1–14, 2003.PubMedCrossRefGoogle Scholar
  43. Yadav S., Irfan M., Ahmad A., Hayat S.: Causes of salinity and plant manifestations to salt stress: A review. — J. Environ. Biol. 32: 667–685, 2011.PubMedGoogle Scholar
  44. Yamazaki J., Ohashi A., Hashimoto Y. et al.: Effects of high light and low temperature during harsh winter on needle photodamage of Abies mariesii growing at the forest limit on Mt. Norikura in Central Japan. — Plant Sci. 165: 257–264, 2003.CrossRefGoogle Scholar
  45. Yamasaki S., Dillenburg L. C.: Measurements of leaf relative water content in Araucaria angustifolia. — R. Bras. Fisiol. Veg. 11: 69–75, 1999.Google Scholar

Copyright information

© The Institute of Experimental Botany 2015

Authors and Affiliations

  • C. -J. Huang
    • 1
    • 2
  • G. Wei
    • 2
  • Y. -C. Jie
    • 1
  • J. -J. Xu
    • 2
  • S. -Y. Zhao
    • 2
  • L. -C. Wang
    • 3
  • S. A. Anjum
    • 3
  1. 1.Institute of RamieHunan Agricultural UniversityChangshaChina
  2. 2.Dazhou Institute of Agricultural SciencesSichuanChina
  3. 3.College of Agronomy and BiotechnologySouthwest UniversityChongqingChina

Personalised recommendations