Advertisement

Photosynthetica

, Volume 54, Issue 1, pp 28–39 | Cite as

Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato

  • X. K. Yuan
  • Z. Q. Yang
  • Y. X. Li
  • Q. Liu
  • W. Han
Original Papers

Abstract

Two greenhouse experiments were conducted in order to investigate the effects of different levels of water stress on gas exchange, chlorophyll fluorescence, chlorophyll content, antioxidant enzyme activities, lipid peroxidation, and yield of tomato plants (Solanum lycopersicum cv. Jinfen 2). Four levels of soil water content were used: control (75 to 80% of field water capacity), mild water stress (55 to 60%), moderate water stress (45 to 50%), and severe water stress (35 to 40%). The controlled irrigation was initiated from the third leaf stage until maturity. The results of two-year trials indicated that the stomatal conductance, net photosynthetic rate, light-saturated photosynthetic rate, and saturation radiation decreased generally under all levels of water stress during all developmental stages, while compensation radiation and dark respiration rate increased generally. Water stress also declined maximum quantum yield of PSII photochemistry, electron transfer rate, and effective quantum yield of PSII photochemistry, while nonphotochemical quenching increased in all developmental stages. All levels of water stress also caused a marked reduction of chlorophyll a, chlorophyll b, and total chlorophyll content in all developmental stages, while activities of antioxidant enzymes, such as superoxide dismutase, peroxidase, and catalase, and lipid peroxidation increased.

Additional key words

drought stress malondialdehyde nonstomatal limitation PN/PPFD response curve stomatal limitation 

Abbreviations

Ca

ambient CO2 concentration

Ci

intercellular CO2 concentration

Chl

chlorophyll

CAT

catalase

CK

control

ETR

electron flow rate

Fv/Fm

maximum quantum yield of PSII photochemistry

gs

stomatal conductance

Ic

compensation irradiance

Is

saturation irradiance

k

curve convexity

Ls

stomatal limitation value

MiWS

mild water stress

MoWS

moderate water stress

MDA

malondialdehyde

NPQ

nonphotochemical quenching

Pmax

light-saturated photosynthetic rate

PN

net photosynthetic rate

POD

peroxidase

RD

dark respiration rate

ROS

reactive oxygen species

SeWS

severe water stress

SOD

superoxide dismutase

α

apparent photosynthetic quantum yield

ΦPSII

effective quantum yield of PSII photochemistry

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bray E.A.: Plant responses to water deficit. — Trends Plant Sci. 2: 48–54, 1997.CrossRefGoogle Scholar
  2. Beauchamp C., Fridovich I.: Superoxide dismutase: improved assay and an assay applicable to arylamide gels. — Anal. Biochem. 44: 276–287, 1971.CrossRefPubMedGoogle Scholar
  3. Berry J.A., Downton W.J.S.: Environmental regulation of photosynthesis. — In: Govindjee (ed.): Photosynthesis. Vol. II. Pp. 263–343. Academic Press, New York — London — Paris — San Diego — San Francisco — São Paulo — Sydney — Tokyo — Toronto 1982.Google Scholar
  4. Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. — J. Exp. Bot. 55: 1607–1621, 2004.CrossRefPubMedGoogle Scholar
  5. Baquedano F.J., Castillo F.J.: Comparative ecophysiological effects of drought on seedlings of the Mediterranean watersaver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. — Trees 20: 689–700, 2006.CrossRefGoogle Scholar
  6. Cakmak I, Horst W.J.: Effect of aluminium on lipid peroxidation superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). — Plant Physiol. 83: 463–468, 1991.CrossRefGoogle Scholar
  7. Chaves M.M.: Effects of water deficits on carbon assimilation. — J. Exp. Bot. 42: 1–16, 1991.CrossRefGoogle Scholar
  8. Cornic G.: Drought stress and high light effects on leaf photosynthesis. — In: Baker N.R., Bowyer J.R. (ed.): Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Pp. 297–313. BIOS Scientific Publ., Oxford 1994.Google Scholar
  9. Cornic G.: Drought stress inhibits photosynthesis by decreasing stomatal aperture not by affecting ATP synthesis. — Trends Plant Sci. 5: 187–188, 2000.CrossRefGoogle Scholar
  10. Cornic G., Fresneau C.: Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. — Ann Bot.-London 89: 887–894, 2002.CrossRefGoogle Scholar
  11. Díaz-Vivancos P., Clemente-Moreno M.J., Rubio M. et al.: Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. — J. Exp. Bot. 59: 2147–2160, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Egert M., Tevini M.: Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). — Environ. Exp. Bot. 48: 43–49, 2002.CrossRefGoogle Scholar
  13. Elsheery N.I., Cao K.F.: Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. — Acta Physiol. Plant. 30: 769–777, 2008.CrossRefGoogle Scholar
  14. Elvira S., Alonso R., Castillo F.J. et al: On the response of pigments and antioxidants of Pinus halepensis seedlings to Mediterranean climatic factors and long-term ozone exposure. — New Phytol. 138: 419–432, 1998.CrossRefGoogle Scholar
  15. Farooq M.S., Basra M.A., Wahid A. et al: Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. — J. Agron. Crop. Sci. 195: 237–246, 2009.CrossRefGoogle Scholar
  16. Fracheboud Y., Haldimann P., Leipner J. et al.: Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). — J. Exp. Bot. 50: 1533–1540, 1999.CrossRefGoogle Scholar
  17. Flexas J., Bota J., Loreto F. et al.: Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. — Plant Biol. 6: 269–279, 2004.CrossRefPubMedGoogle Scholar
  18. Galmés J., Medrano H., Flexas J.: Photosynthesis and photoinhibition in response to drought in a pubescent (var. minor) and a glabrous (var. palaui) variety of Digitalis minor. — Environ. Exp. Bot. 60: 105–111, 2007.CrossRefGoogle Scholar
  19. Ghanati F., Morita A., Yokota H.: Induction of suberin and increase of lignin content by excess boron in tobacco cells. — Soil Sci. Plant Nutr. 48: 357–364, 2002.CrossRefGoogle Scholar
  20. Hernández J.A., Olmos E., Corpas F.J. et al.: Salt induced oxidative stress in chloroplasts of pea plants. — Plant Sci. 105: 151–167, 1995.CrossRefGoogle Scholar
  21. Jiang M., Zhang J.: Water stress induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and upregulates the activities of antioxidant enzymes in maize leaves. — J. Exp. Bot. 53: 2401–2410, 2002.CrossRefPubMedGoogle Scholar
  22. Jaleel C.A., Gopi R., Manivannan P. et al.: Antioxidant potential and indole alkaloid profile variations with water deficits along different parts of two varieties of Catharanthus roseus. — Colloid Surface B 62: 312–318, 2008.CrossRefGoogle Scholar
  23. Krause G.H.: Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. — Physiol. Plantarum 74: 566–574, 1988.CrossRefGoogle Scholar
  24. Lawlor D.W.: The effects of water deficit on photosynthesis. — In: Smirnoff N. (ed.): Environment and Plant Metabolism. Flexibility and Acclimation. Pp. 129–160. BIOS Scientific Publishers, Oxford 1995.Google Scholar
  25. Loggini B., Scartazza A., Brugnoil E. et al.: Antioxidative defense system, pigment composition and photosynthetic efficiency in two wheat cultivars subjected to drought. — Plant Physiol. 119: 1091–1100, 1999.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lu C.M., Zhang J.H.: Modifications in photosystem II photochemistry in senescent leaves of maize plants. — J. Exp. Bot. 49: 1671–1679, 1998.CrossRefGoogle Scholar
  27. Ma C., Wang Z.Q., Kong B.B. et al.: Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery. — Plant Growth Regul. 70: 275–285, 2013.CrossRefGoogle Scholar
  28. Maxwell K., Johnson G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  29. Medrano H., Escalona J.M., Bota J. et al.: Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. — Ann. Bot.- London 89: 895–905, 2002.CrossRefGoogle Scholar
  30. Murkowski A.: Heat stress and spermidine: effect on chlorophyll fluorescence in tomato plants. — Biol. Plantarum 44: 53–57, 2001.CrossRefGoogle Scholar
  31. Nouairi I., Ben Ammar W., Ben Youssef N. et al.: Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. — Acta Physiol. Plant. 31: 237–247, 2009.CrossRefGoogle Scholar
  32. Peri P.L., Arena G., Martínez Pastur M. et al.: Photosynthetic response to different light intensities, water status and leaf age of two Berberis species (Berberidaceae) of Patagonian steppe. — J. Arid. Environ. 75: 1218–1222, 2011.CrossRefGoogle Scholar
  33. Plaut Z.: Sensitive of crop plant to water stress at specific developmental stages: Reevaluation of experimental findings. — Isr. J. Plant Sci. 43: 99–111, 1995.CrossRefGoogle Scholar
  34. Prioul J.L., Chartier P.: Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: A critical analysis of the methods used. — Ann. Bot.- London 41: 789–800, 1977.Google Scholar
  35. Powles S.B.: Photoinhibition of photosynthesis induced by visible light. — Annu. Rev. Plant Phys. 35: 15–44, 1984.CrossRefGoogle Scholar
  36. Ren J., Dai W.R., Xuan Z.Y. et al.: The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species. — Forest Ecol. Manag. 239: 112–119, 2007.CrossRefGoogle Scholar
  37. Shao H.B., Liang Z.S., Shao M.A. et al.: Dynamic changes of antioxidative enzymes of ten wheat genotypes at soil water deficits. — Colloid Surface B 42: 187–195, 2005.CrossRefGoogle Scholar
  38. Sofo A., Dichio B., Montanaro G. et al.: Photosynthetic performance and light response of two olive cultivars under different water and light regimes. — Photosynthetica 47: 602–608, 2009.CrossRefGoogle Scholar
  39. Smirnoff N.: The role of active oxygen in the response of plants to water deficit and desiccation. — New Phytol. 125: 27–58, 1993.CrossRefGoogle Scholar
  40. Tezara W., Marín O., Rengifo E. et al.: Photosynthesis and photoinhibition in two xerophytic shrubs during drought. — Photosynthetica 43: 37–45, 2005.CrossRefGoogle Scholar
  41. Tezara W., Mitchell V.J., Driscoll S.D. et al.: Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. — Nature 401: 914–917, 1999.CrossRefGoogle Scholar
  42. Türkan I., Bor M., Özdemir F. et al.: Differential responses of lipid peroxidation and antioxidants in the leaves of drought tolerant P. actifolius Gray and drought sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. — Plant Sci. 168: 223–231, 2005.CrossRefGoogle Scholar
  43. Vandoorne B., Mathieu A.S., Van den Ende W. et al.: Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. — J. Exp. Bot. 63: 4359–4373, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wagner P.A., Dreyer E.: Interactive effects of waterlogging and irradiance on the photosynthetic performance of seedlings from three oak species displaying different sensitivities (Quercus robur, Q. petraea and Q. rubra). — Ann. For. Sci. 54: 409–429, 1997.CrossRefGoogle Scholar
  45. Wellburn A.R.: The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. — J. Plant Physiol. 144: 307–313, 1994.CrossRefGoogle Scholar
  46. Wu F.Z., Bao W.K., Li F.L. et al.: Effects of water stress and nitrogen supply on leaf gas exchange and fluorescence parameters of Sophora davidii seedlings. — Photosynthetica 46: 40–48, 2008.CrossRefGoogle Scholar
  47. Wang F.Z., Wang Q.B., Kwon S.Y. et al.: Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. — J. Plant Physiol. 162: 465–472, 2005.CrossRefPubMedGoogle Scholar
  48. Xu Z.Z., Zhou G.S.: Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. — Planta 224: 1080–1090, 2006.CrossRefPubMedGoogle Scholar
  49. Yin C.Y., Berninger F., Li C.Y.: Photosynthetic responses of Populus przewalski subjected to drought stress. — Photosynthetica 44: 62–68, 2006.CrossRefGoogle Scholar
  50. Younis Y.M., Ghirmay S., al-Shihry S.S.: African cucurbita pepo L.: Properties of seed and variability in fatty acid composition of seed oil. — Photochemistry 54: 71–75, 2000.CrossRefGoogle Scholar
  51. Zhang J., Jia W., Yang J. et al.: Role of ABA in integrating plant responses to drought and salt stresses. — Field Crop. Res. 97: 111–119, 2006.CrossRefGoogle Scholar
  52. Zheng B.S., Jing S.H., Yan Y.R.: [Research Methodology of Modern Plant Physiology and Biochemistry.] Pp. 189–198. China Meteorological Press, Beijing 2006. [In Chinese]Google Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  • X. K. Yuan
    • 1
    • 2
  • Z. Q. Yang
    • 1
    • 2
  • Y. X. Li
    • 1
    • 2
  • Q. Liu
    • 2
  • W. Han
    • 1
    • 2
  1. 1.School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
  2. 2.Jiangsu Key Laboratory of Agricultural MeteorologyNanjing University of Information Science &TechnologyNanjingChina

Personalised recommendations