Photosynthetica

, Volume 53, Issue 2, pp 187–194 | Cite as

Photosynthetic response of beech seedlings of different origin to water deficit

  • E. Pšidová
  • Ľ. Ditmarová
  • G. Jamnická
  • D. Kurjak
  • J. Majerová
  • T. Czajkowski
  • A. Bolte
Original Papers

Abstract

European beech (Fagus sylvatica L.) seedlings of three different origins were used to evaluate the effect of water deficit and recovery during the most vulnerable phase of forest tree life. Gas-exchange characteristics and fluorescence rapid light curves were studied in the seedlings from a warm region (PV1, 530 m a.s.l.), seedlings from a moderately warm region (PV2, 625 m a.s.l.), optimal for beech, and in seedlings from a cool region (PV3; 1,250 m a.s.l.). Changes in photosynthetic characteristics caused by water deficit were similar, but their intensity was dependent on the origin of the seedlings. Simulation of drought conditions by the interruption of watering led to a decrease in the efficiency of primary photochemistry in PSII, with the most significant decrease in the PV2 seedlings. Conversely, water deficit affected most significantly gas exchange in PV3, where the recovery process was also the worst. The PV1 demonstrated the highest resistance to water deficit. Drought-adaptation of beech seedlings at non-native sites seems to be linked to water availability and to the origin of the beech seedlings.

Additional keywords

chlorophyll a fluorescence leaf water potential net photosynthetic rate photosynthesis stomatal conductance water-use efficiency, provenances, Fagus sylvatica 

Abbreviations

C

control

DS

drought stress

Fm

maximum fluorescence yield of a light-adapted leaf

Fv′/Fm

maximum efficiency of open PSII reaction centre in the light

gs

stomatal conductance

NPQ

nonphotochemical quenching

PN

net photosynthetic rate

PV1

warm region

PV2

moderately warm region

PV3

cool region

rETR

relative electron transport rate

QA

primary quinone acceptor of PSII

qN

coefficient of nonphotochemical quenching

qP

coefficient of photochemical quenching

R

recovery

RLC

rapid light curve

WUEi

intrinsic water-use efficiency (= PN/gs)

ΔF/Fm

effective quantum yield of PSII under light

ΦPSII

effective quantum yield of PSII

Ψpd

predawn leaf water potential

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agestam E., Ekö P.M., Nilsson U. et al.: The effects of shelterwood density and site preparation on natural regenaration of Fagus sylvatica in southern Sweden. — Forest Ecol. Manag. 176: 61–73, 2003.CrossRefGoogle Scholar
  2. Allen C.D., Macalady A.K., Chenchouni H. et al.: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. — Forest Ecol. Manag. 259: 660–684, 2010.CrossRefGoogle Scholar
  3. Barbour M.M., Tcherkez G., Bickford C.P. et al.: δ13C of leafrespired CO2 reflects intrinsic water-use efficiency in barley. — Plant Cell Environ. 34: 792–799, 2011.CrossRefPubMedGoogle Scholar
  4. Barna M.: Natural regeneration of Fagus sylvatica L.: a Review. — Austrian J. For. Sci. 128:71–91, 2011.Google Scholar
  5. Barna M., Jarčuška B.: Natural regeneration of beech. — In: Barna M., Kulfan J., Bublinec E. (ed.): Beech and Beech Ecosystems of Slovakia. Pp. 227–248. VEDA, Bratislava 2011.Google Scholar
  6. Bolte A., Czajkowski T., Kompa T.: The north-eastern distribution range of European beech — a review. — Forestry 80: 413–429, 2007.CrossRefGoogle Scholar
  7. Bolte A., Ammer C., Löf M. et al.: Adaptive forest management in Central Europe: Climate change impacts, strategies and integrative concept. — Scand. J. Forest Res. 24: 473–482, 2009.CrossRefGoogle Scholar
  8. Chaves M.M., Flaxas J., Pinheiro C.: Photosynthasis under drought and salt stress: regulation mechanoisms from whole plant to cell. — Ann. Bot.-London 103: 551–560, 2009.CrossRefGoogle Scholar
  9. Czajkowski T., Kühling M., Bolte A.: [Influence of the summer drought in 2003 on the growth of natural regeneration of beech (Fagus sylvatica L.) in north-eastern Central Europe.] — Allg. Forst. Jagdztg. 176: 133–143, 2005. [In German]Google Scholar
  10. Czajkowski T., Bolte A.: [Different response of German and Polish beech (Fagus sylvatica L.) to drought.] — Allg. Forst. Jagdztg. 177: 30–40, 2006. [In German]Google Scholar
  11. Gallé A., Feller U.: Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery. — Physiol. Plantarum 131: 412–421, 2007.CrossRefGoogle Scholar
  12. García-Plazaola J.I., Becerril J.M.: Effects of drought on photoprotective mechanisms in European beech (Fagus sylvatica L.) seedlings from different provenances. — Trees 14: 485–490, 2000.CrossRefGoogle Scholar
  13. Geßler A., Keitel C., Kreuzwieser J. et al.: Potential risk for European beech (Fagus sylvatica L.) in a changing climate. — Trees 21: 1–11, 2007.CrossRefGoogle Scholar
  14. Goisser M., Zang U., Matzner E. et al.: Growth of juvenile beech (Fagus sylvatica L.) upon transplant into a wind-opened spruce stand of heterogeneous light and water conditions. — Forest Ecol. Manag. 310: 110–119, 2013.CrossRefGoogle Scholar
  15. Gömöry D., Paule L., Longauer R. et al.: Assesment of mechanisms forming adaptive genetic variation in Norway spruce and common beech. — Acta Facult. Forient. Zvolen 52: 7–20, 2010.Google Scholar
  16. Gullo M., Nardini A., Salleo S. et al.: Cahnges in root hydraulic conductance (K R) of Olea Oleaster seedlings following drought stress and irrigation. — New Phytol. 140: 25–31, 1998.CrossRefGoogle Scholar
  17. Hampe A., Petit R.J.: Conserving biodiversity under climate change: the rear edge matters. — Ecol. Lett. 8: 461–467, 2005.CrossRefPubMedGoogle Scholar
  18. Maxwell K., Johnson G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  19. Millar C.I., Stephenson N.L., Stephens S.L.: Climate change and forests of future: managing in the face of uncertainty. — Ecol. Appl. 17: 2145–2151, 2007.CrossRefPubMedGoogle Scholar
  20. Mittal S., Kumari N., Sharma V.: Differential responses of seven contrasting species to high light using pigment and chlorophyll a fluorescence. — J. Stress Physiol. Biochem. 7: 20–33, 2011.Google Scholar
  21. Müller-Stark G.: [Genetic criteria for the conservation of forest genetic resources.]. — NNA-Berichte 2: 21–25, 1997. [In German]Google Scholar
  22. Niinemets Ü.: Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. — Forest Ecol. Manag. 260: 1623–1639, 2010.CrossRefGoogle Scholar
  23. Ögren E.: Evaluation of chlorophyll fluorescence as a probe for drought stress in willow leaves. — Plant Physiol. 93: 1280–1285, 1990.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Padilla F.M., Miranda J.D., Pugnaire F.I.: Early root growth plasticity in seedlings of three Mediterranean woody species. — Plant Soil 296: 103–113, 2007.CrossRefGoogle Scholar
  25. Ralph P.J., Gademann R.: Rapid light curves: Apoverful tool to assess photosynthetic activity. — Aquat. Bot. 82: 222–237, 2005.CrossRefGoogle Scholar
  26. Rascher U., Liebig M., Lüttge U.: Evaluation of instant light-response curve of chlorphyll fluorescence parameters obtained with a portable chlorophyll flurometer on site in the field. — Plant Cell Environ. 23: 1397–1405, 2000.CrossRefGoogle Scholar
  27. Repáč I., Tučeková A., Sarvašová I. et al.: Survival and growth of outplanted seedlings of selected tree species on the High Tatra Mts. windthrow area after the first growing season. — J. For. Sci. 57: 349–358, 2011.Google Scholar
  28. Ritchie G.A.: Chlorophyll fluorescence: What is it and what do the numbers mean? — In: Riley L.E., Dumroese R.K., Landis T.D. (ed.): National Proceedings: Forest and Conservation Nursery Associations — 2005. USDA Forest Service Proceedings. Pp. 34–42. Rocky Mountain Research Station, Fort Collins 2006.Google Scholar
  29. Roostaei M., Mohammadi S.A., Amri A. et al.: Chlorophyll fluorescence parameters and drought tolerance in a mapping population of winter bread wheat in the highlands of Iran. — Russ. J. Plant Physiol+. 58: 351–358, 2011.CrossRefGoogle Scholar
  30. Rose L., Leuschner C., Köckemann B. et al.: Are marginal beech (Fagus sylvatica L.) Provenances a source for drought tolerant ecotypes? — Eur. J. Forest Res. 128: 335–343, 2009.CrossRefGoogle Scholar
  31. Sánchez-Gómez D., Robson T.M., Gascó A. et al.: Differences in the leaf functional traits of six beech (Fagus sylvatica L) populations are reflected in their response to water limitation. — Environ. Exp. Bot. 87: 110–119, 2013.CrossRefGoogle Scholar
  32. Schreiber U., Gademann R., Ralph P.J. et al.: Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. — Plant Cell Physiol. 38: 945–951, 1997.CrossRefGoogle Scholar
  33. Schreiber U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. — In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 279–319. Springer, Dordrecht 2004.CrossRefGoogle Scholar
  34. Silva D.E., Mazzella P.R., Legay M. et al.: Does natural regeneration determine the limit of European beech distribution under climatic stress? — Forest Ecol. Manag. 226: 263–272, 2012.CrossRefGoogle Scholar
  35. Szwagrzyk J., Szewczyk J., Bodziarczyk J: Dynamics of seedling banks in beech forest: results of a 10-year study on germination, growth and survival. — Forest Ecol. Manag. 141: 237–250, 2001.CrossRefGoogle Scholar
  36. Thiel D., Kreyling J., Backhaus S. et al.: Different reaction of central and marginal provenances of Fagus sylvatica to experimental drought. — Eur. J. Forest Res. 133: 247–260, 2014.CrossRefGoogle Scholar
  37. Tognetti R., Johnson J.D., Michelozzi M.: The response of European beech (Fagus sylvatica L.) seedlings from two Italian populations to drought and recovery. — Trees 9: 348–354, 1995.CrossRefGoogle Scholar
  38. Valladares F., Chico J.M., Aranda I. et al.: The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. — Trees 16: 395–403, 2002.Google Scholar
  39. Welp LR., Randerson J.T., Liu H.P.: The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. — Agr. Forest Meteorol. 147: 172–185, 2007.CrossRefGoogle Scholar
  40. Yin C.Y., Peng Y.H., Zang R.G. et al.: Adaptive responses of Populus kangdingensis to drought stress. — Physiol. Plantarum 123: 445–451, 2005.CrossRefGoogle Scholar
  41. Zivcak M., Brestic M., Balatova Z. et al.: Photosynthetic electron transport and specific photoprotective response in wheat leaves under drought stress. — Photosynth. Res. 117: 529–546, 2013.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2015

Authors and Affiliations

  • E. Pšidová
    • 1
  • Ľ. Ditmarová
    • 1
  • G. Jamnická
    • 1
  • D. Kurjak
    • 2
    • 3
  • J. Majerová
    • 1
  • T. Czajkowski
    • 4
  • A. Bolte
    • 4
  1. 1.Institute of Forest EcologySlovak Academy of SciencesZvolenSlovak Republic
  2. 2.Faculty of ForestryTechnical University ZvolenZvolenSlovak Republic
  3. 3.Faculty of Forestry and Wood SciencesCzech University of Life Sciences PraguePrague 6Czech Republic
  4. 4.Thünen Institute of Forest EcosystemsEberswaldeGermany

Personalised recommendations