, Volume 53, Issue 1, pp 72–84 | Cite as

Easy-to-make portable chamber for in situ CO2 exchange measurements on biological soil crusts

  • M. Ladrón De GuevaraEmail author
  • R. Lázaro
  • J. L. Quero
  • S. Chamizo
  • F. Domingo
Original Papers


Commercial chambers for in vivo gas exchange are usually designed to measure on vascular plants, but not on cryptogams and other organisms forming biological soil crusts (BSCs). We have therefore designed two versions of a chamber with different volumes for determining CO2 exchange with a portable photosynthesis system, for three main purposes: (1) to measure in situ CO2 exchange on soils covered by BSCs with minimal physical and microenvironmental disturbance; (2) to acquire CO2-exchange measurements comparable with the most widely employed systems and methodologies; and (3) to monitor CO2 exchange over time. Different configurations were tested in the two versions of the chamber and fluxes were compared to those measured by four reference commercial chambers: three attached to two respirometers, and a conifer chamber attached to a portable photosynthesis system. Most comparisons were done on biologically crusted soil samples. When using devices in a closed system, fluxes were higher and the relationships to the reference chambers were weaker. Nevertheless, high correlations between our chamber operating in open system and measurements of commercial respiration and photosynthetic chambers were found in all cases (R 2 > 0.9), indicating the suitability of the chamber designed for in situ measurements of CO2 gas exchange on BSCs.

Additional key words

chamber cyanobacteria infrared gas analyzer lichen moss net photosynthesis soil respiration 



biological soil crust(s)


CO2 concentration


infrared gas analyzer


relative humidity


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almagro M., López J., Querejeta J.I., Martínez-Mena M.: Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. — Soil Biol. Biochem. 41: 594–605, 2009.CrossRefGoogle Scholar
  2. Arevalo C.B.M., Bhatti J.S., Chang S.X. et al.: Soil respiration in four different land use systems in north central Alberta, Canada. — J. Geophys. Res. 115: 1–12, 2010.CrossRefGoogle Scholar
  3. Belnap J., Büdel B., Lange O.L.: Biological soil crusts: characteristics and distribution. — In: Belnap J., Lange O.L. (ed.): Biological Soil Crusts: Structure, Function and Management. Pp. 3–30. Springer, New York 2003.CrossRefGoogle Scholar
  4. Bloom A.J., Mooney H.A., Björkman O., Berry J.A.: Materials and methods for carbon dioxide and water exchange analysis. — Plant Cell Environ. 3: 371–376, 1980.CrossRefGoogle Scholar
  5. Botting R.S., Fredeen A.L.: Net ecosystem CO2 exchange for moss and lichen dominated forest floors of old-growth subboreal spruce forests in central British Columbia, Canada. — Forest Ecol. Manag. 235: 240–251, 2006.CrossRefGoogle Scholar
  6. Bowling D.R., Grote E.E., Belnap J.: Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States. — J. Geophys. Res. 116: 1–17, 2011.Google Scholar
  7. Bremer D.J., Ham J.M.: Measurement and partitioning of in situ carbon dioxide fluxes in turfgrasses using a pressurized chamber. — Agron. J. 97: 627–632, 2005.CrossRefGoogle Scholar
  8. Brostoff W.N., Sharifi M.R., Rundel P.W.: Photosynthesis of cryptobiotic crusts in a seasonally inundated system of pans and dunes at Edwards Air Force Base, western Mojave desert, California: Laboratory Studies. — Flora 197: 143–151, 2002.CrossRefGoogle Scholar
  9. Brostoff W.N., Sharifi M.R., Rundel P.W.: Photosynthesis of cryptobiotic soil crusts in a seasonally inundated system of pans and dunes in the western Mojave Desert, CA: Field studies. — Flora 200: 592–600, 2005.CrossRefGoogle Scholar
  10. Büdel B., Colesie C., Green T.G.A. et al.: Improved appreciation of the functioning and importance of biological soil crusts in Europe — the Soil Crust International project (SCIN). — Biodivers. Conserv. 23: 1639–1658, 2014.CrossRefPubMedCentralPubMedGoogle Scholar
  11. Carstairs A.G., Oechel W.C.: Effects of several microclimatic factors and nutrients on net carbon dioxide exchange in Cladonia alpestris. — Arctic Alpine Res. 10: 81–94, 1978.CrossRefGoogle Scholar
  12. Castillo-Monroy A.P., Maestre F.T., Rey A. et al.: Biological soil crust microsites are the main contributor to soil respiration in a semiarid ecosystem. — Ecosystems 14: 835–847, 2011.CrossRefGoogle Scholar
  13. Chen S., Lin G., Huang J., He M.: Responses of soil respiration to simulated precipitation pulses in semiarid steppe under different grazing regimes. — J. Plant Ecol. 1: 237–246, 2008.CrossRefGoogle Scholar
  14. Cocker D.R. III, Flagan R.C., Seinfeld J.H.: State-of-the-art chamber facility for studying atmospheric aerosol chemistry. — Environ. Sci. Technol. 35: 2594–2601, 2001.CrossRefPubMedGoogle Scholar
  15. Conen F., Smith K.A.: An explanation of linear increases in gas concentration under closed chambers used to measure gas exchange between soil and the atmosphere. — Eur. J. Soil Sci. 51: 111–117, 2000.Google Scholar
  16. Cox P.M., Betts R.A., Jones C.D. et al.: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. — Nature 408: 184–187, 2000.CrossRefPubMedGoogle Scholar
  17. Davidson E.A., Savage K., Verchot L.V., Navarro R.: Minimizing artifacts and biases in chamber-based measurements of soil respiration. — Agric. Forest Meteorol. 113: 21–37, 2002.CrossRefGoogle Scholar
  18. Dring M.J., Brown F.A.: Photosynthesis of intertidal brown algae during and after periods of emersion: a renewed search for physiological causes of zonation. — Mar. Ecol.-Prog. Ser. 68: 301–308, 1982.CrossRefGoogle Scholar
  19. Elbert W., Weber B., Burrows S. et al.: Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. — Nat. Geosci. 5: 459–462, 2012.CrossRefGoogle Scholar
  20. Escolar C., Martínez I., Bowker M.A., Maestre F.T.: Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. — Philos. T. R. Soc. B 367: 3087–3099, 2012.CrossRefGoogle Scholar
  21. Fang C., Moncrieff J.B.: An improved dynamic chamber technique for measuring CO2 efflux from the surface of soil. — Funct. Ecol. 10: 297–305, 1996.CrossRefGoogle Scholar
  22. Fang C., Moncrieff J.B.: An open-top chamber for measuring soil respiration and the influence of pressure difference on CO2 efflux measurement. — Funct. Ecol. 12: 319–325, 1998.CrossRefGoogle Scholar
  23. Field C.B., Ball J.T., Berry J.A.: Photosynthesis: principles and field techniques. — In: Pearcy R.W., Ehleringer J.R., Mooney H.A., Rundel, P.W. (ed.): Plant Physiological Ecology. Field Methods and Instrumentation. Pp. 209–253. Chapman and Hall, New York 1989.CrossRefGoogle Scholar
  24. Freijer J.I., Bouten W.: A Comparison of Field Methods for Measuring Soil Carbon Dioxide Evolution: Experiments and Simulation. — Plant Soil 135: 133–142, 1991.CrossRefGoogle Scholar
  25. Friedlingstein P., Cox P., Betts R. et al.: Climate-carbon cycle feedback analysis, results from the C4MIP model intercomparison. — J. Climate 19: 3337–3353, 2006.CrossRefGoogle Scholar
  26. Friedmann E.I., Kappen L., Meyer M.A., Nienow J.A.: Longterm productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. — Microb. Ecol. 25: 51–69, 1993.CrossRefPubMedGoogle Scholar
  27. Gao F., Yates S.R.: Simulation of enclosure-based methods for measuring gas emissions from soil to the atmosphere. — J. Geophys. Res. 103: 26127–26136, 1998.CrossRefGoogle Scholar
  28. Grote E.E., Belnap J., Housman D.C., Sparks J.P.: Carbon exchange in biological soil crust communities under differential temperatures and soil water content: implications for global change. — Glob. Change Biol. 16: 2763–2774, 2010.CrossRefGoogle Scholar
  29. Healy R.W., Striegl R.G., Russell T.F. et al.: Numerical evaluation of static-chamber measurements of soil-atmosphere gas exchange: identification of physical processes. — Soil Sci. Soc. Am. J. 60: 740–747, 1996.CrossRefGoogle Scholar
  30. Hutchinson G.L., Mosier A.R.: Improved soil cover method for field measurement of nitrous oxide fluxes. — Soil Sci. Soc. Am. J. 45: 311–316, 1981.CrossRefGoogle Scholar
  31. Hutchinson G.L., Livingston G.P., Healy R.W., Striegl R.G.: Chamber measurement of surface-atmosphere trace gas exchange: numerical evaluation of dependence on soil, interfacial layer, and source/sink properties. — J. Geophys. Res.-Atmos. 105: 8865–8875, 2000.CrossRefGoogle Scholar
  32. Janssens I.A., Kowalski A.S., Longdoz B., Ceulemans R.: Assessing forest soil CO2 efflux: an in situ comparison of four techniques. — Tree Physiol. 20: 23–32, 2000.CrossRefPubMedGoogle Scholar
  33. Kanemasu E.T., Powers W.L., Sij J.W.: Field chamber measurements of CO2 efflux from soil surface. — Soil Sci. 118: 233–237, 1974.CrossRefGoogle Scholar
  34. Kershaw K.A.: Physiological-environmental interactions in lichens. II. The pattern of net photosynthetic acclimation in Peltigera canina (L.). Willd. var. praetextata (Floerke in Somm.) Hue, and Peltigera polydactyla (Neck.) Hoffm. — New Phytol. 79: 377–390, 1977.CrossRefGoogle Scholar
  35. Kesselmeier J., Schäfer L., Ciccioli P. et al.: Emission of monoterpenes and isoprene from a Mediterranean oak species Quercus ilex L. measured within the BEMA (Biogenic Emissions in the Mediterranean Area) project. — Atmos. Environ. 30: 1841–1850, 1996.CrossRefGoogle Scholar
  36. Ladrón de Guevara M., Lázaro R., Quero J.L. et al.: Simulated climate change reduced the capacity of lichen-dominated biocrusts to act as carbon sinks in two semi-arid Mediterranean ecosystems. — Biodivers. Conserv. 23: 1787–1807, 2014.CrossRefGoogle Scholar
  37. Lange O.L.: Photosynthesis of soil-crust biota as dependent on environmental factors. — In: Belnap J., Lange O.L. (ed): Biological Soil Crusts: Structure, Function and Management. Pp. 217–240. Springer, New York 2003.Google Scholar
  38. Lange O.L., Kilian E., Ziegler H.: Water vapour uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. — Oecologia 71: 104–110, 1986.CrossRefGoogle Scholar
  39. Lange O.L., Kidron G.J., Büdel B. et al.: Taxonomic composition and photosynthetic characteristic of the ‘biological soil crusts’ covering sand dunes in the western Negev Desert. — Funct. Ecol. 6: 519–527, 1992.CrossRefGoogle Scholar
  40. Lange O.L., Belnap J., Reichenberger H., Meyer A.: Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: Role of water content on light and temperature responses of CO2 exchange. — Flora 192: 1–15, 1997.Google Scholar
  41. Lange O.L., Green T.G., Heber U.: Hydration-dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance? — J. Exp. Bot. 52: 2033–2042, 2001.CrossRefPubMedGoogle Scholar
  42. Langensiepen M., Kupisch M., van Wijk M.T., Ewert F.: Analyzing transient closed chamber effects on canopy gas exchange for optimizing flux calculation timing. — Agric. Forest Meteorol. 164: 61–70, 2012.CrossRefGoogle Scholar
  43. Le Dantec V., Epron D., Dufrêne E.: Soil CO2 efflux in a beech forest: comparison of two closed dynamic systems. — Plant Soil 214: 125–132, 1999.Google Scholar
  44. Li X.R., Zhang P., Su Y.G., Jia R.L.: Carbonfixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: A four-year field study. — Catena 97: 119–126, 2012.CrossRefGoogle Scholar
  45. LI-COR: Interfacing custom chambers to the LI-6400 sensor head. LI-6400 Application note 3. Pp. 8. LI-COR Biosciences Inc., Lincoln 2003.Google Scholar
  46. LI-COR: Using the LI-6400/LI-6400XT Portable Photosynthesis system. Version 6.2. LI-COR Biosciences Inc., Lincoln 2012.Google Scholar
  47. Livingston G.P., Hutchinson G.L.: Enclosure-based measurement of trace gas exchange: applications and sources of error. — In: Matson P.A., Harriss R.C. (ed): Biogenic Trace Gases: Measuring Emissions from Soil and Water. Pp. 14–51. Blackwell Scientific Publications, Oxford 1995.Google Scholar
  48. Livingston G.P., Hutchinson G.L., Spartalian K.: Diffusion theory improves chamber-based measures of trace gas emissions. — Geophys. Res. Lett. 32: L24817, 2005.CrossRefGoogle Scholar
  49. Lund C.P., Riley W.J., Pierce L.L., Field C.B.: The effects of chamber pressurization on soil-surface CO2 flux and implications for NEE measurements under elevated CO2. — Glob. Change Biol. 5: 269–281, 1999.CrossRefGoogle Scholar
  50. Madsen R.A., Demetriades-Shah T.H., Garcia R.L., McDermitt D.K.: Soil CO2 Flux Measurements: Comparisons Between the LI-COR LI-6400 and LI-8100. Li-6400 Technical Document. Pp. 4. LI-COR Biosciences Inc, Lincoln 2008.Google Scholar
  51. Maestre F.T., Escolar C., Ladrón de Guevara M. et al.: Changes in biocrust cover drive carbon cycle responses to climate change in drylands. — Glob. Change Biol. 19: 3835–3847, 2013.CrossRefGoogle Scholar
  52. Magnani F., Mencuccini M., Borghetti M. et al.: The human footprint in the carbon cycle of temperate and boreal forests. — Nature 447: 848–851, 2007.CrossRefPubMedGoogle Scholar
  53. Matthias A.D., Blackmer A.M., Bremner J.M.: A simple chamber technique for field measurement of emissions of nitrous oxide from soils. — J. Environ. Qual. 9: 251–256, 1980.CrossRefGoogle Scholar
  54. Millan-Almaraz J.R., Guevara-Gonzalez R.G., Romero-Troncoso R.J. et al.: Advantages and disadvantages on photosynthesis measurement techniques: A review. — Afr. J. Biotechnol. 8: 7340–7349, 2009.Google Scholar
  55. Mosier A.R.: Chamber and isotope techniques. — In: Andreae M.O., Schimel D.S., Robertson G.P. (ed.): Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. Pp. 175–187. John Wiley and Sons, Chinchester 1989.Google Scholar
  56. Nakayama F.S.: Soil respiration. — Remote Sens. Rev. 5: 311–321, 1990.CrossRefGoogle Scholar
  57. Norman J.M., Kucharik C.J., Gower S.T. et al.: A comparison of six methods for measuring soil-surface carbon dioxide fluxes. — J. Geophys. Res. 102: 28771–28777, 1997.CrossRefGoogle Scholar
  58. Oyonarte C., Rey A., Raimundo J. et al.: The use of soil respiration as an ecological indicator in arid ecosystems of the SE of Spain: spatial variability and controlling factors. — Ecol. Indic. 14: 40–49, 2012.CrossRefGoogle Scholar
  59. Pumpanen J., Kolari P., Ilvesniemi H., et al.: Comparison of different chamber techniques for measuring soil CO2 efflux. — Agr. Forest Meteorol. 123: 159–176, 2004.CrossRefGoogle Scholar
  60. Raich J.W., Schlesinger W.H.: The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. — Tellus 44: 81–99, 1992.CrossRefGoogle Scholar
  61. Rayment M.B., Jarvis P.G.: An improved open chamber system for measuring soil CO2 effluxes in the field. — J. Geophys. Res. 102: 28779–28784, 1997.Google Scholar
  62. Rey A., Pegoraro E., Tedeschi V. et al.: Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. — Glob. Change Biol. 8: 851–866, 2002.CrossRefGoogle Scholar
  63. Rey A., Pegoraro E., Oyonarte C. et al.: Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semi-arid ecosystem in the SE of Spain. — Soil Biol. Biochem. 43: 393–403, 2011.CrossRefGoogle Scholar
  64. Rolston D.E., Fried M., Goldhamer D.A.: Denitrification measured directly from nitrogen and nitrous oxide gas fluxes. — Soil Sci. Soc. Am. J. 40: 259–266, 1976.CrossRefGoogle Scholar
  65. Ryden J.C., Lund L.J., Focht D.D.: Direct in-field measurement of nitrous oxide flux from soils. — Soil Sci. Soc. Am. J. 42: 731–737, 1978.CrossRefGoogle Scholar
  66. Schipperges B., Rydin H.: Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water content and repeated desiccation. — New Phytol. 140: 677–684, 1998.CrossRefGoogle Scholar
  67. Schlesinger W.H.: Carbon balance in terrestrial detritus. — Ann. Rev. Ecol. Syst. 8: 51–81, 1977.CrossRefGoogle Scholar
  68. Schroeter B., Sancho L.G., Valladares F.: In situ comparison of daily photosynthetic activity patterns of saxicolous lichens and mosses in Sierra de Guadarrama, central Spain. — Bryologist 102: 623–633, 1999.Google Scholar
  69. Sebacher D.I., Harriss R.C.: A system for measuring methane fluxes from inland and coastal wetland environments. — J. Environ. Qual. 11: 34–37, 1982.CrossRefGoogle Scholar
  70. Sitch S., Smith B., Prentice I.C. et al.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. — Glob. Change Biol. 9: 161–185, 2003.CrossRefGoogle Scholar
  71. Snelgar W.P., Brown D.H., Green T.G.A.: Provisional survey interaction between photosynthetic rate, respiratory rate and thallus water content in some New Zealand cryptogams. — New Zeal. J. Bot. 18: 247–256, 1980.CrossRefGoogle Scholar
  72. Tang J.W., Bolstad P.V., Martin J.G.: Soil carbon fluxes and stocks in a Great Lakes forest chronosequence. — Glob. Change Biol. 15: 145–155, 2009.CrossRefGoogle Scholar
  73. Vourlitis G.L., Oechel W.C., Hastings S.J., Jenkins M.A.: A system for measuring in situ CO2 and CH4 flux in unmanaged ecosystems: an Arctic example. — Chemosphere 26: 329–337, 1993.CrossRefGoogle Scholar
  74. Welles J.M., Demetriades-Shah T.H., McDermitt D.K.: Considerations for measuring ground CO2 effluxes with chambers. — Chem. Geol. 177: 3–13, 2001.CrossRefGoogle Scholar
  75. Wilske B., Burgheimer J., Karnieli A. et al.: The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev desert, Israel. — Biogeosciences 5: 1411–1423, 2008.CrossRefGoogle Scholar
  76. Zaady E., Kuhn U., Wilske B. et al.: Patterns of CO2 exchange in biological soil crusts of successional age. — Soil Biol. Biochem. 32: 959–966, 2000.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2015

Authors and Affiliations

  • M. Ladrón De Guevara
    • 1
    Email author
  • R. Lázaro
    • 1
  • J. L. Quero
    • 2
    • 3
  • S. Chamizo
    • 1
  • F. Domingo
    • 1
  1. 1.Departamento de Desertificación y Geoecología, Estación Experimental de Zonas Áridas.Consejo Superior de Investigaciones Científicas (CSIC)La Cañada de San Urbano-AlmeríaSpain
  2. 2.Departamento de Ingeniería Forestal, Escuela Técnica Superior de Ingeniería Agronómica y de Montes (ETSIAM)Universidad de CórdobaCórdobaSpain
  3. 3.Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan CarlosMóstolesSpain

Personalised recommendations