Advertisement

Photosynthetica

, Volume 52, Issue 4, pp 614–626 | Cite as

A portable reflectance-absorptance-transmittance meter for photosynthetic work on vascular plant leaves

  • R. J. Ritchie
  • J. W. Runcie
Original Papers

Abstract

PAM (pulse amplitude modulation) fluorometers can be used to estimate the electron transport rate (ETR) [μmol(e) m−2 s−1] from photosynthetic yield determinations, provided the absorptance (\(Ab{t_\lambda }\)) of the photoorganism is known. The standard assumed value used for absorptance is 0.84 (leaf absorptance factor, AbtF). We described a reflectance-absorptancetransmittance (RAT) meter for routine experimental measurements of the actual absorptance of leaves. The RAT uses a red-green-blue (RGB) LED diode light source to measure absorptances at wavelengths suitable for use with PAM fluorometers and infrared gas analysers. Results using the RAT were compared to \(Ab{t_\lambda }\) spectra using a Taylor integrating sphere on bird’s nest fern (Asplenium nidus), banana, Doryanthes excelsa, Kalanchoe daigremontiana, and sugarcane. Parallel venation had no significant effect upon Abt465 in banana, Doryanthes, a Dendrobium orchid, pineapple, and sugarcane, but there was a slight difference in the case of the fern A. nidus. The average Abt465 (≈ 0.96) and Abt625 (≈ 0.89) were ≈14% and 6% higher than the standard value (AbtF = 0.84). The PAR-range Abt400–700 was only ≈ 5% higher than the standard value (≈ 0.88) based on averaged absorptance from the blue, green, and red light data and from where the RGB-diode was used as a ‘white’ light source. In some species, absorptances at blue and red wavelengths are quite different (e.g. water lily). Reflectance measurements of leaves using the RAT would also be useful for remote sensing studies.

Additional key words

absorptance electron transport rate integrating sphere leaf absorptance factor PAM fluorometry reflectance 

Abbreviations

APSII

allocation factor of photons to PSII between PSII and PSI

\(Ab{t_\lambda }\)

absorptance at a given wavelength or wavelength range

AbtF

default leaf absorptance factor

CL

confidence limit

I

irradiance [μmol(photon) m−2 s−1] PPFD

ETR

absolute electron transport rate

rETR

relative electron transport rate

PAM fluorometry

pulse amplitude modulation fluorometry

Pg

gross photosynthesis

R

reflectance

RAT

reflectance-absorptance-transmittance

T

transmittance

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthony, P.A., Holtum, J.A.M., Jackes, B.R.: Shade acclimation of rainforest leaves to colonization by lichens. — Funct. Ecol. 16: 808–816, 2002.CrossRefGoogle Scholar
  2. Bauerle, W.L., Weston, D.J., Bowdena, J.D. et al.: Leaf absorptance of photosynthetically active radiation in relation to chlorophyll meter estimates among woody plant species. — Sci. Hortic.-Amsterdam 101: 169–178, 2004.CrossRefGoogle Scholar
  3. Beach, K.S., Borgeas, H.B., Smith, C.M.: Ecophysiological implications of the measurement of transmittance and reflectance of tropical macroalgae. — Phycologia 45: 450–457, 2006.CrossRefGoogle Scholar
  4. Beer, S., Ilan, M., Eshel, A. et al.: Use of pulse amplitude modulated (PAM) fluorometry for in situ measurements of photosynthesis in two Red Sea faviid corals. — Mar. Biol. 131: 607–612, 1998.CrossRefGoogle Scholar
  5. Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.PubMedCrossRefGoogle Scholar
  6. Burger, J., Edwards, G.E.: Photosynthetic efficiency, and photodamage by UV and visible radiation, in red versus green leaf Coleus varieties. — Plant Cell Physiol. 37: 395–399, 1996.CrossRefGoogle Scholar
  7. Carter, G.A., Knapp, A.K.: Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. — Am. J. Bot. 88: 677–684, 2001.PubMedCrossRefGoogle Scholar
  8. Cheng, L.L., Fuchigami, L.H., Breen, P.J.: Light absorption and partitioning in relation to nitrogen content in ‘Fuji’ apple leaves. — J. Am. Soc. Hortic. Sci. 125: 581–587, 2000.Google Scholar
  9. Conde-Álvarez, R.M., Pérez-Rodríguez, E., Altamirano, M. et al.: Photosynthetic performance and pigment content in the aquatic liverwort Riella helicophylla under natural solar irradiance and solar irradiance without ultraviolet light. — Aquat. Bot. 73: 47–61, 2002.CrossRefGoogle Scholar
  10. Cope, K.R., Bugbee, B.: Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light. — Hortscience 48: 504–509, 2013.Google Scholar
  11. Cummings, M.E., Zimmerman, R.C.: Light harvesting and the package effect in the seagrasses Thalassia testudinum Banks ex Königand Zostera marina L.: optical constraints on photoacclimation. — Aquat. Bot. 75: 261–274, 2003.CrossRefGoogle Scholar
  12. Davis, P.A., Hangarter, R.P.: Chloroplast movement provides photoprotection to plants by redistributing PSII damage within leaves. — Photosynth. Res. 112: 153–161, 2012.PubMedCrossRefGoogle Scholar
  13. Delfine, S., Alvino, A., Villani, M.C., Loreto, F.: Restrictions to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. — Plant Physiol. 119: 1101–1106, 1999.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Durako, M.J.: Leaf optical properties and photosynthetic leaf absorptances in several Australian seagrasses. — Aquat. Bot. 87: 83–89, 2007.CrossRefGoogle Scholar
  15. Ehleringer, J.: Leaf absorptances of Mohave and Sonoran Desert plants. — Oecologia 49: 366–370, 1981.CrossRefGoogle Scholar
  16. Ehleringer, J., Björkman, O., Mooney, H.A.: Leaf pubescence: effects on absorptance and photosynthesis in a desert shrub. — Science 192: 376–377, 1976.PubMedCrossRefGoogle Scholar
  17. Enríquez, S.: Light absorption efficiency and the package effect in the leaves of the seagrass Thalassia testudinum. — Mar. Ecol. Prog. Ser. 289: 141–150, 2005.CrossRefGoogle Scholar
  18. Enríquez, S., Méndez, E.R., Iglesias-Prieto, R.: Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. — Limnol. Oceanogr. 50: 1025–1032, 2005.CrossRefGoogle Scholar
  19. Evans, J.R., Poorter, H.: Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. — Plant Cell Environ. 24: 755–767, 2001.CrossRefGoogle Scholar
  20. Frost-Christensen, H., Sand-Jensen, K.: The quantum efficiency of photosynthesis in macroalgae and submerged angiosperms. — Oecologia 91: 377–384, 1992.CrossRefGoogle Scholar
  21. Frost-Christensen, H., Sand-Jensen, K.: Comparative kinetics of photosynthesis in floating and submerged Potamogeton leaves. — Aquat. Bot. 51: 121–134, 1995.CrossRefGoogle Scholar
  22. Gates, D.M., Keegan, H.J., Schleter, J.C., Weidner, V.R.: Spectral properties of plants. — Appl. Optics 4: 11–20, 1965.CrossRefGoogle Scholar
  23. Gauslaa, Y., Ustvedt, E.M.: Is parietin a UV-B or a blue-light screening pigment in the lichen Xanthoria parietina? — Photoch. Photobio. Sci. 2: 424–432, 2003.CrossRefGoogle Scholar
  24. Gausman, H.W., Allen, W.A.: Optical parameters of leaves of 30 plant species. — Plant Physiol. 52: 57–62, 1973.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.CrossRefGoogle Scholar
  26. Gorton, H.L., Brodersen, C.R., Williams, W.E., Vogelmann, T.C.: Measurement of the optical properties of leaves under diffuse light. — Photochem. Photobiol. 86: 1076–1083, 2010.PubMedCrossRefGoogle Scholar
  27. Hennige, S.J., Suggett, D.J., Warner, M.E. et al.: Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. — Coral Reefs 28: 179–195, 2009.CrossRefGoogle Scholar
  28. Johkan, M., Shoji, K., Goto, F. et al.: Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. — Environ. Exp. Bot. 75: 128–133, 2012.CrossRefGoogle Scholar
  29. Jones, H.G., Vaughan, R.A.: Remote Sensing of Vegetation: Principles, Techniques, and Applications. Pp. 37–45, 47–58, 273–275. Oxford University Press, Oxford 2010.Google Scholar
  30. Knapp, A.K., Carter, G.A.: Variability in leaf optical properties among 26 species from a broad range of habitats. — Am. J. Bot. 85: 940–946, 1998.PubMedCrossRefGoogle Scholar
  31. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: the basics. — Annu. Rev. Plant Phys. 42: 313–349, 1991.CrossRefGoogle Scholar
  32. Lee, D.W., Graham, R.: Leaf optical properties of rainforest sun and extreme shade plants. — Am. J. Bot. 73: 1100–1108, 1986.CrossRefGoogle Scholar
  33. Lee, D.W., Bone, R.A., Tarsis, S.L., Storch, D.: Correlates of leaf optical properties in tropical forest sun and extreme-shade plants. — Am. J. Bot. 77: 370–380, 1990.CrossRefGoogle Scholar
  34. McCree, K.J.: The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. — Agr. Meteorol. 9: 191–216, 1972.CrossRefGoogle Scholar
  35. Melis, A.: Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size. — Philos. T. Roy. Soc. B 323: 397–409, 1989.CrossRefGoogle Scholar
  36. Merzlyak, M.N., Chivkunova, O.B., Solovchenko, A.E., Naqvi, K.R.: Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. — J. Exp. Bot. 59: 3903–3911, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Ralph, P.J., Durako, M.J., Enríquez, S., Collier, C.J., Doblin, M.A.: Impact of light limitation on seagrasses. — J. Exp. Mar. Biol. Ecol. 350: 176–193, 2007.CrossRefGoogle Scholar
  38. Ritchie, R.J.: Photosynthesis in the Blue Water Lily (Nymphaea caerulea Saligny) using PAM fluorometry. — Int. J. Plant Sci. 173: 124–136, 2012.CrossRefGoogle Scholar
  39. Ritchie, R.J.: The use of solar radiation by a photosynthetic bacterium living as a mat or in a shallow pond or flatbed reactor. — Photochem. Photobiol. 89: 1143–1162, 2013.PubMedCrossRefGoogle Scholar
  40. Ritchie, R.J.: Photosynthesis in an encrusting lichen [Dirinaria picta (Sw.) Schaer.ex Clem., Physiaceae] and its symbiont, Trebouxia sp, using PAM fluorometry. — Int. J. Plant Sci. 175: 450–466, 2014.CrossRefGoogle Scholar
  41. Ritchie, R.J., Bunthawin, S.: The Use of PAM (Pulse Amplitude Modulation) fluorometry to measure photosynthesis in a CAM orchid, Dendrobium spp. (D. cv. Viravuth Pink). — Int. J. Plant Sci. 171: 575–585, 2010a.CrossRefGoogle Scholar
  42. Ritchie, R.J., Bunthawin, S.: Photosynthesis in Pineapple [Ananas comosus comosus (L.) Merr] Measured Using PAM (Pulse Amplitude Modulation) Fluorometry. — Trop. Plant Biol. 3: 193–203, 2010b.CrossRefGoogle Scholar
  43. Ritchie, R.J., Runcie, J.W.: Photosynthetic electron transport in an anoxygenic photosynthetic bacterium afifella (Rhodopseudomonas) marina measured using PAM fluorometry. — Photochem. Photobiol. 89: 370–383, 2013.PubMedCrossRefGoogle Scholar
  44. Rodríguez-Román, A., Hernández-Pech, X., Thomé, P.E. et al.: Photosynthesis and light utilization in the Caribbean Coral Montastraea faveolata recovering from a bleaching event. — Limnol. Oceanogr. 51: 2702–2710, 2006.CrossRefGoogle Scholar
  45. Runcie, J.W., Durako, M.J.: Among-shoot variability and leafspecific absorptance characteristics affect diel estimates of in situ electron transport of Posidonia australis. — Aquat. Bot. 80: 209–220, 2004.CrossRefGoogle Scholar
  46. Schreiber, U., Bilger, W.; Neubauer, C.: Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. — In: Schulze, E.D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis: Ecological Studies, 100. Pp. 49–70. Springer, Berlin, 1995.CrossRefGoogle Scholar
  47. Schultz, H.R.: Leaf absorptance of visible radiation in Vitis vinifera L. estimates of age and shade effects with a simple field method. — Sci. Hortic.-Amsterdam 66: 93–102, 1996.CrossRefGoogle Scholar
  48. Solhaug, K.A., Larsson, P., Gauslaa, Y.: Light screening in lichen cortices can be quantified by chlorophyll fluorescence techniques for both reflecting and absorbing pigments. — Planta 231:1003–1011, 2010.PubMedCrossRefGoogle Scholar
  49. Solhaug, K.A., Gauslaa, Y., Nybakken, L., Bilger, W.: UV-induction of sun-screening pigments in lichens. — New Phytol. 158: 91–100, 2003.CrossRefGoogle Scholar
  50. Stambler, N., Dubinsky, Z.: Corals as light collectors: an integrating sphere approach. — Coral Reefs 24: 1–9, 2005.CrossRefGoogle Scholar
  51. Stemke, J.A., Santiago, L.S.: Consequences of light absorptance in calculating electron transport rate of desert and succulent plants. — Photosynthetica 49: 195–200, 2011.CrossRefGoogle Scholar
  52. Terashima, I., Fujita, T., Inoue T, Chow, W.S., Oguchi. R.: Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. — Plant Cell Physiol. 50: 684–697, 2009.PubMedCrossRefGoogle Scholar
  53. Valladares, F., Skillman, J.B., Pearcy, R.W.: Convergence in light capture efficiencies among tropical forest understory plants with contrasting crown architectures: a case of morphological compensation. — Am. J. Bot. 89: 1275–1284, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2014

Authors and Affiliations

  1. 1.Tropical Environmental Plant Biology Unit, Faculty of Technology and EnvironmentPrince of Songkla UniversityPhuketThailand
  2. 2.School of Biological SciencesUniversity of SydneySydneyAustralia
  3. 3.Aquation Pty LtdUmina BeachAustralia

Personalised recommendations