, Volume 52, Issue 4, pp 581–588 | Cite as

Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L.) plants

  • G. M. Abdel-Fattah
  • A. A. Asrar
  • S. M. Al-Amri
  • E. M. Abdel-Salam
Open Access
Original Papers


We studied the effect of arbuscular mycorrhizal (AM) fungus, Glomus constrictum (Trappe), and soil phosphorus (P) on gas-exchange parameters, growth, and nutrition of soybean plants grown in pots with sterilized soil. Two contrasting concentrations of KH2PO4, i.e. no added and 0.5 g(P) kg−1(soil), were used. Addition of soluble phosphate increased all growth parameters, P and N concentrations, and most of the studied photosynthetic parameters of both the mycorrhizal and nonmycorrhizal plants. The mycorrhizal inoculation significantly increased plant growth responses, P and N concentrations in shoot and root tissues, acid and alkaline phosphatase activities, and total soluble proteins in root tissues compared with the nonmycorrhizal plants. The stimulations were related to the level of the mycorrhizal colonization in the root tissues. The mycorrhizal plants showed significantly higher net photosynthetic rate, stomatal conductance, and transpiration rate than those of nonmycorrhizal plants, especially in soil without added P. The phosphate addition to soil reduced generally the percentage of the mycorrhizal colonization in the root tissues, and consequently the mycorrhizal benefits. In general, growth, nutrition, and photosynthetic parameters of the soybean plants showed a high degree of dependency on the mycorrhizal fungus in nonfertilized soil when compared with the soil fertilized with P. This study confirmed that AM colonization could improve growth and nutrition of the soybean plant through increasing photosynthesis in leaves, particularly at low P in soil.

Additional key words

arbuscular mycorrhizal symbiosis depletion zone inoculum root/shoot ratio 



net photosynthetic rate


alkaline phosphatase


arbuscular mycorrhizal


arbuscular mycorrhizal fungi


arbuscular mycorrhizal response


dry mass


transpiration rate


stomatal conductance


leaf area


mycorrhizal-specific phosphatase


nonarbuscular mycorrhizal fungi


p-nitrophenol phosphate


the ratio of root to shoot


  1. Abdel-Fattah, G.M.: Functional activity of VA-mycorrhiza (Glomus mosseae) in the growth and productivity of soybean plants grown in sterilized soil. — Folia Microbiol. 42: 495–502, 1997.CrossRefGoogle Scholar
  2. Abdel-Fattah, G.M.: Measurement of the viability of arbuscularmycorrhizal fungi using three different stains; relation to growth and metabolic activities of soybean plants. — Microbiol. Res. 156: 359–367, 2001.PubMedCrossRefGoogle Scholar
  3. Abdel-Fattah, G.M., Asrar, A.A.: Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. — Acta Physiol. Plant. 34: 267–277, 2012.Google Scholar
  4. Abdel-Fattah, G.M., El-Katony, T.M.: Effects of lime, nitrogen fertilization and VA-mycorrhizal fungi on growth, metabolic activities and nutrient content of soybean grown in sterilized soil. — Egypt. J. Bot. 36: 17–36, 1996.Google Scholar
  5. Abdel-Fattah, G.M., Ibrahim, A.H., Al-Amri, S.M., Shoker, A.E.: Synergistic effect of arbuscular mycorrhizal fungi and spermine on amelioration of salinity stress of wheat (Triticum aestivum L. cv. gimiza). — Aust. J. Crop Sci. 7: 1525–1532, 2013.Google Scholar
  6. Al-Amri, S.M., Al-Whaibi, M.H., Abdel-Fattah, G.M., Siddiqui, M.H.: Role of mycorrhizal fungi in tolerance of wheat genotypes to salt stress. — African J. Microbiol. Res. 7: 1286–1295, 2013.Google Scholar
  7. Al-Kahtani, H.A.: Quality of soybeans and their crude oils in Saudi Arabia. — J. Am. Oil Chem. Soc. 66: 109–113, 1989.CrossRefGoogle Scholar
  8. Al-Karaki, G.N., Al-Raddad, A.: Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. — Mycorrhiza 7: 83–88, 1997.CrossRefGoogle Scholar
  9. Allen, M.F.: Influence of vesicular mycorrhizae on water movement through Bouteloua gracilis (H.B.K.) lag ex Steud. — New Phytol. 91: 191–196, 1982.CrossRefGoogle Scholar
  10. Al-Qarawi, A.A.: Efficiency of arbuscular mycorrhizal (AM) fungi for improving growth, root system architecture, nutrient uptake, leaf hydraulic conductance and photosynthetic pigments of maize and pea plants. — J. Env. Sci. 39: 67–82, 2010.Google Scholar
  11. Ames, R.N., Reid, C.P.P., Porter, L.K., Cambardella, C.: Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. — New Phytol. 95: 381–396, 1983.CrossRefGoogle Scholar
  12. Arriagada, C.A., Herrera, M.A., Ocampo, J.A.: Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globules co-cultured with Glycine max in soil contaminated with heavy metals. — J. Environ. Manage. 84: 93–99, 2007.PubMedCrossRefGoogle Scholar
  13. Asrar, A.A., Abdel-Fattah, G.M., Elhindi, K.M.: Improving growth, flower yield and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. — Photosynthetica 50: 305–316, 2012.CrossRefGoogle Scholar
  14. Auge, R.M.: Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. — Mycorrhiza 11: 3–42, 2001.CrossRefGoogle Scholar
  15. Auge, R.M., Toler, H.D., Sams, C.E., Nasim, G.: Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. — Mycorrhiza 18: 115–121, 2008.PubMedCrossRefGoogle Scholar
  16. Berta, G., Fusconi, A., Trotta, A.: VA mycorrhizal infection and the morphology and function of root systems. — Environ. Exp. Bot. 33: 159–173, 1993.CrossRefGoogle Scholar
  17. Blal, B., Morel, C., Gianinazzi-Pearson, P. et al.: Influence of vesicular-arbuscular mycorrhizae on phosphate fertilizer efficiency in two tropical acid soils planted with micropropagated oil palm (Elaeis guineensis J.). — Biol. Fert. Soils 9: 43–48, 1990.CrossRefGoogle Scholar
  18. Bradford, M.M.: A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  19. Bryla, D.R., Duniway, J.M.: Growth, phosphorus uptake, and water relations of safflower and wheat infected with an arbuscular mycorrhizal fungus. — New Phytol. 136: 581–590, 1997.CrossRefGoogle Scholar
  20. Cavagnaro, T.R., Smith, F.A., Smith, S.E., Jakobsen, I.: Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. — Plant Cell Environ. 28: 642–650, 2005.CrossRefGoogle Scholar
  21. Cheng, L.Y., Bucciarelli, B., Shen, J.B. et al.: Update on white lupin cluster roots acclimation to phosphorus deficiency. — Plant Physiol. 156: 1025–1032, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Cho, K., Toler, H., Lee, J. et al.: Mycorrhizal symbiosis and responses of sorghum plants to combined drought and salinity stresses. — J. Plant Physiol. 163: 517–528, 2006.PubMedCrossRefGoogle Scholar
  23. Daei, G., Ardekani, M.R., Rejali, F. et al.: Alleviation of salinity stress on wheat yield, yield components and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. — J. Plant Physiol. 166: 617–625, 2009.PubMedCrossRefGoogle Scholar
  24. Ezawa, T., Yoshida, T.: Characterization of phosphatase in marigold roots infected with vesicular-arbuscular mycorrhizal fungi. — Soil Sci. Plant Nutr. 40: 255–264, 1994.CrossRefGoogle Scholar
  25. Fattah, O.A.: Effect of mycorrhiza and phosphorus on micronutrients uptake by soybean plant grown in acid soil. — Int. J. Agron. Plant Prod. 4: 429–437, 2013.Google Scholar
  26. Gianinazzi, S., Gianinazzi-Pearson, V., Dexheimer, J.: Enzy matic studies on the metabolism of vesicular-arbuscular mycorrhiza. III. Ultrastructural localization of acid and alkaline phosphatase in onion roots infected by Glomus mosseae (Nicol. & Gerd.). — New Phytol. 82: 127–132, 1979.CrossRefGoogle Scholar
  27. Gianinazzi, S., Dexheimer, J., Gianinazzi-Pearson, V., Marx, C.: Role of the host-arbuscule interface in the VA mycorrhizal symbiosis: Ultracytological studies of processes involved in phosphate and carbohydrate exchange. — Plant Soil 71: 211–215, 1983.CrossRefGoogle Scholar
  28. Gianinazzi-Pearson, V., Gianinazzi, S.: Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. I. Effect of mycorrhiza formation and phosphorus nutrition on soluble phosphatase activities in onion roots. — Physiol. Veg. 14: 833–841, 1976.Google Scholar
  29. Gianinazzi-Pearson, V., Gianinazzi, S.: Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. II. Soluble alkaline phosphatase specific to mycorrhizal infection in onion roots. — Physiol. Plant Pathol. 12: 45–53, 1978.CrossRefGoogle Scholar
  30. Gosling, P., Mead, A., Proctor, M. et al.: Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. — New Phytol. 198: 546–556, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Graham, J.H., Syvertsen, J.P.: Influence of vesicular-arbuscular mycorrhiza on the hydraulic conductivity of root of two citrus root stocks. — New Phytol. 97: 277–284, 1984.CrossRefGoogle Scholar
  32. He, X.H., Critchley, C., Bledsoe, C.: Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). — Crit. Rev. Plant Sci. 22: 531–567, 2003.CrossRefGoogle Scholar
  33. Hodge, A., Campbell, C.D., Fitter, A.H.: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. — Nature 413: 297–299, 2001.PubMedCrossRefGoogle Scholar
  34. Ibrahim, A.H., Abdel-Fattah, G.M., Emam, F.M. et al.: Arbuscular mycorrhizal fungi and spermine alleviate the adverse effects of salinity stress on electrolyte leakage and productivity of wheat plants. — Phyton-Ann. Rei Bot. 51: 261–276, 2011.Google Scholar
  35. Jackson, M.L.: Soil Chemical Analysis. Pp. 137. Printice Hall of India Ltd., New Delhi 1973.Google Scholar
  36. Krishna, K.R., Bagyaraj, D.J., Papavinas, K.G.: Acid and alkaline phosphatase activities in mycorrhizal and uninfected roots of Arachis hypogaea L. — Ann. Bot. 51: 551–553, 1983.Google Scholar
  37. Lekberg, Y., Koide, R.T., Twomlow, S.J.: Effect of agricultural management practices on arbuscular mycorrhizal fungal abundance in low-input cropping systems of southern Africa: a case study from Zimbabwe. — Biol. Fert. Soils 44: 917–923, 2008.CrossRefGoogle Scholar
  38. Li, A.R., Guan, K.Y., Stonor, R. et al.: Direct and indirect influences of arbuscular mycorrhizal fungi on phosphorus uptake by two root hemiparasitic Pedicularis species: do the fungal partners matter at low colonization levels? — Ann. Bot. 112: 1089–1098, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Liu, J.Y., Blaylock, L.A., Endre, G. et al.: Transcript profiling coupled with spatial expression analysis reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. — Plant Cell 15: 2106–2123, 2003.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Maggio, A., Reddy, M.P., Joly, R.J.: Leaf gas exchange and soluble accumulation in the halophyte Salvadora persica grown at moderate salinity. — Environ. Exp. Bot. 44: 31–38, 2000.PubMedCrossRefGoogle Scholar
  41. Menge, J.A., Johnson, E.L.V., Platt, R.G.: Mycorrhizal dependency of several citrus cultivars under three nutrient regimes. — New Phytol. 81: 553–559, 1978.CrossRefGoogle Scholar
  42. Nelson, D.W., Sommers, L.E.: Determination of total nitrogen in plant material. — Agron. J. 65: 109–112, 1973.CrossRefGoogle Scholar
  43. Phillips, J.M., Hayman, D.S.:. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. — Trans. Brit. Mycol. Soc. 55: 158–161, 1970.CrossRefGoogle Scholar
  44. Ruiz-Lozano, J.M., Azcon, R.: Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. — Physiol. Plantarum 95: 472–478, 1995.CrossRefGoogle Scholar
  45. Sheng, M., Lalande, R., Hamel, C., Ziadi, N.: Effect of long-term tillage and mineral phosphorus fertilization on arbuscular mycorrhizal fungi in a humid continental zone of Eastern Canada. — Plant Soil 369: 599–613, 2013.CrossRefGoogle Scholar
  46. Shu, B., Wang, P., Xia, R.X.: Effects of mycorrhizal fungi on phytate-phosphorus utilization in trifoliate orange (Poncirus trifoliata L. Raf) seedlings. — Acta Physiol. Plant. 36: 1023–1032, 2014.CrossRefGoogle Scholar
  47. Smith, S.E., Gianinazzi-Pearson, V.: Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. — Annu. Rev. Plant Phys. 39: 221–244, 1988.CrossRefGoogle Scholar
  48. Smith, S.E., Gianinazzi-Pearson, V.: Phosphate uptake and arbuscular activity in mycorrhizal Allium cepa L.: Effect of photon irradiance and phosphate nutrition. — Aust. J. Plant Physiol. 17: 177–188, 1990.CrossRefGoogle Scholar
  49. Smith, S.E., Jakobsen, I., Gronlund, M., Smith, F.A.: Roles of arbuscular mycorrhizas in plant phosphorus nutrition; Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. — Plant Physiol. 156: 1050–1057, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Smith, S.E., Smith, F.A., Jakobsen, I.: Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. — Plant Physiol. 133: 16–20, 2003.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Smith, S.E., Smith, F.A, Jakobsen, I.: Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. — New Phytol. 162: 511–524, 2004.CrossRefGoogle Scholar
  52. Smith, S.E., St. John, B.J., Smith, F.M., Bromley, J.L.: Effects of mycorrhizal infection on plant growth, nitrogen and phosphorus nutrition of glasshouse grown Allium cepa L. — New Phytol. 103: 359–373, 1986.CrossRefGoogle Scholar
  53. Son, C.L., Smith, S.E.: Mycorrhizal growth responses: Interactions between photon irradiance and phosphorus nutrition. — New Phytol. 108: 305–314, 1988.CrossRefGoogle Scholar
  54. Srinivasan, R., Govindasamy, C.: Influence of native arbuscular mycorrhizal fungi on growth, nutrition and phytochemical constituents of Catharanthus roseus (L.) G. Don. — J. Coast Life Med. 2: 31–37, 2014.Google Scholar
  55. Trouvelot, A., Kough, J., Gianinazzi-Pearson, V.: Evaluation of VA infection levels in root systems. Research for estimation methods having a functional significance. — In: Gianinazzi-Pearson, V., Gianinazzi, S. (ed.). Physiological and Genetical Aspects of Mycorrhizae. Pp. 217–221. INRA Press, Paris 1986.Google Scholar
  56. Vaseghmanesh, T., Kordlaghari, K.P., Neia, G.M.., Kelidari, A.: The response of yield components of sunflower to mycorrhiza inoculation and phosphorus fertilizer. — Ann. Biol. Res. 4: 101–104, 2013.Google Scholar
  57. Wu, Q.S., Zou, Y.N., Liu, W. et al.: Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. — Plant Soil Environ. 56: 470–475, 2010.Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • G. M. Abdel-Fattah
    • 1
    • 2
  • A. A. Asrar
    • 1
  • S. M. Al-Amri
    • 3
  • E. M. Abdel-Salam
    • 1
  1. 1.Plant Production Department, College of Food and Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Botany Department, Faculty of ScienceMansoura UniversityMansouraEgypt
  3. 3.Department of Biology, College of Science and ArtShaqra UniversityShagraSaudi Arabia

Personalised recommendations