Photosynthetica

, Volume 52, Issue 4, pp 555–563 | Cite as

Evaluation of photosynthetic performance of wheat cultivars exposed to boron toxicity by the JIP fluorescence test

  • M. T. Öz
  • Ö. Turan
  • C. Kayihan
  • F. Eyidoğan
  • Y. Ekmekçi
  • M. Yücel
  • H. A. Öktem
Original Papers

Abstract

The changes in growth and photosynthetic performance of two wheat (Triticum aestivum L.) cultivars (Bolal-2973 and Atay-85) differing in their sensitivity to boron (B) toxicity were investigated under toxic B conditions. Eight-day old seedlings were exposed to highly toxic B concentrations (5, 7.5, and 10 mM H3BO3) for 5 and 9 days. Fast chlorophyll a fluorescence kinetics was determined and analysed using JIP test. Growth parameters, tissue B contents, and membrane damage were measured at two stress durations. The photochemical performance of PSII was hindered more in the sensitive cultivar (Atay-85) than that of the tolerant one (Bolal-2973) under B toxicity. The increase in the B concentration and stress duration caused membrane leakage in both cultivars. However, higher membrane damage was observed in Atay-85 compared to Bolal-2973. Additionally, significant reduction of growth parameters was observed in both cultivars at toxic B concentrations. The accumulation of B was higher in shoots than in roots of both cultivars. Nevertheless, Atay-85 translocated more B from roots to leaves compared to Bolal-2973. The advantages of certain JIP test parameters were demonstrated for evaluation of PSII activity in plants exposed to B stress. Evaluation of photosynthetic performance by JIP test as well as assessment of growth and tissue B content might be used to determine the effects of B toxicity in wheat. The results indicated lesser sensitivity to B toxicity in Bolal-2973 compared to Atay-85.

Additional key words

chlorophyll fluorescence fluorescence transient performance index photosynthesis 

Abbreviations

ABS

absorption

CS

cross section

ET

electron transfer/transport

F0

initial fluorescence intensity

FM

maximal fluorescence intensity

ICP-ASE

inductively coupled plasma-atomic emission spectroscopy

OJIP

fluorescence transient with O-J-I-P phases

PI

performance index

QA

primary quinone acceptor of photosystem II

QB

secondary quinone acceptor of photosystem II

RC

reaction centre

TR

trapping flux

φE0 or ET0/ABS

quantum yield of electron transport

φP0 or TR0/ABS

maximum quantum yield of primary photochemistry

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpaslan, M., Gunes, A.: Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. — Plant Soil 236: 123–128, 2001.CrossRefGoogle Scholar
  2. Ardic, M., Sekmen, A.H., Tokur, S. et al.: Antioxidant responses of chickpea plants subjected to boron toxicity. — Plant Biol. 11: 328–338, 2009.PubMedCrossRefGoogle Scholar
  3. Bussotti, F., Strasser, R.J., Schaub, M.: Photosynthetic behavior of woody species under high ozone exposure probed with the JIP test: a review. — Environ. Pollut. 147: 430–437, 2007.PubMedCrossRefGoogle Scholar
  4. Campbell, T.A., Rathjen, A.J., Paull, J.G., Islam, A.K.M.R.: Method for screening bread wheat for tolerance to boron. — Euphytica 100: 131–135, 1998.CrossRefGoogle Scholar
  5. Ceppi, M.G., Oukarroum, A., Çiçek, N. et al.: The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. — Physiol. Plantarum 144: 277–288, 2012.CrossRefGoogle Scholar
  6. Cervilla, L.M., Rosales, M.A., Rubio-Wilhelmi, M.M. et al.: Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. — Plant Sci. 176: 545–552, 2009.CrossRefGoogle Scholar
  7. Chantachume, Y., Smith, D., Hollamby, G.J. et al.: Screening for boron tolerance in wheat (T. aestivum) by solution culture in filter paper. — Plant Soil 177: 249–254, 1995.CrossRefGoogle Scholar
  8. Choi, E.Y., Kolesik, P., McNeill, A. et al.: The mechanism of boron tolerance for maintenance of root growth in barley (Hordeum vulgare L.). — Plant Cell Environ. 30: 984–993, 2007.PubMedCrossRefGoogle Scholar
  9. Čajánek, M., Štroch, M., Lachetová, I. et al.: Characterization of the photosystem II inactivation of heat-stressed barley leaves as monitored by the various parameters of chlorophyll a fluorescence and delayed fluorescence. — J. Photoch. Photobio. B 47: 39–45, 1998.CrossRefGoogle Scholar
  10. Eullaffroy, P., Frankart, C., Aziz, A. et al.: Energy fluxes and driving forces for phytosynthesis in Lemna minor exposed to herbicides. — Aquat. Bot. 90: 172–178, 2009.CrossRefGoogle Scholar
  11. Guidi, L., Degl’Innocenti, E., Carmassi, G. et al.: Effects of boron on leaf chlorophyll fluorescence of greenhouse tomato grown with saline water. — Environ. Exp. Bot. 73: 57–63, 2011.CrossRefGoogle Scholar
  12. Gunes, A., Soylemezoglu, G., Inal, A. et al.: Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. — Sci. Hortic.-Amsterdam 110: 279–284, 2006.CrossRefGoogle Scholar
  13. Gupta, U.C.: Boron deficiency and toxicity symptoms for several crops as related to tissue boron levels. — J. Plant Nutr. 6: 387–395, 1983.CrossRefGoogle Scholar
  14. Han, S., Tang, N., Jiang, H.X. et al.: CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. — Plant Sci. 176: 143–153, 2009.CrossRefGoogle Scholar
  15. Hayes, J.E., Reid, R.J.: Boron tolerance in barley is mediated by efflux of boron from the roots. — Plant Physiol. 136: 3376–3382, 2004.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Hoagland, D.R., Arnon, D.I.: The water culture method for growing plants without soil. — Circ. Calif. Agr. Exp. Sta. 347: 1–39, 1950.Google Scholar
  17. Jefferies, S.P., Barr, A.R., Karakousis, A. et al.: Mapping of chromosome regions conferring boron toxicity tolerance in barley (Hordeum vulgare L.). — Theor. Appl. Genet. 98: 1293–1303, 1999.CrossRefGoogle Scholar
  18. Kalayci, M., Alkan, A., Cakmak, I. et al.: Studies on differential response of wheat cultivars to boron toxicity. — Euphytica 100: 123–129, 1998.CrossRefGoogle Scholar
  19. Karabal, E., Yücel, M., Öktem, H.A.: Antioxidants responses of tolerant and sensitive barley cultivars to boron toxicity. — Plant Sci. 164: 925–933, 2003.CrossRefGoogle Scholar
  20. Kobayashi, M., Matoh, T., Azuma, J.: Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. — Plant Physiol. 110: 1017–1020, 1996.PubMedCentralPubMedGoogle Scholar
  21. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis-the basics. — Annu. Rev. Plant Phys. 42: 313–349, 1991.CrossRefGoogle Scholar
  22. Landi, M., Pardossi, A., Remorini, D., Guidi, L.: Antioxidant and photosynthetic response of a purple-leaved and a green-leaved cultivar of sweet basil (Ocimum basilicum) to boron excess. — Environ. Exp. Bot. 85: 64–75, 2013a.CrossRefGoogle Scholar
  23. Landi, M., Remorini, D., Pardossi, A., Guidi, L.: Boron excess affects photosynthesis and antioxidant apparatus of greenhouse Cucurbita pepo and Cucumis sativus. — J. Plant Res. 126: 775–786, 2013b.PubMedCrossRefGoogle Scholar
  24. Lazár, D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. — Funct. Plant Biol. 33: 9–30, 2006.CrossRefGoogle Scholar
  25. Lazár, D.: Modelling of light-induced chlorophyll a fluorescence rise (O-J-I-P transient) and changes in 820 nm-transmittance signal of photosynthesis. — Photosynthetica 47: 483–498, 2009.CrossRefGoogle Scholar
  26. Mahboobi, H., Yücel, M., Öktem, H.A.: Cell wall uronic acid concentrations of resistant and sensitive cultivars of wheat and barley under boron0toxicity. — J. Plant Nutr. 24: 1965–1975, 2001.CrossRefGoogle Scholar
  27. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.PubMedCrossRefGoogle Scholar
  28. Miwa, K., Fujiwara, T.: Boron transport in plants: co-ordinated regulation of transporters. — Ann. Bot.-London 105: 1103–1108, 2010.CrossRefGoogle Scholar
  29. Nable, R.O., Bañuelos, G.S., Paull, J.G.: Boron toxicity. — Plant Soil 193: 181–198, 1997.CrossRefGoogle Scholar
  30. Nable, R.O.: Resistance to boron toxicity amongst several barley and wheat cultivars: A preliminary examination of the resistance mechanism. — Plant Soil 112: 45–52, 1988.CrossRefGoogle Scholar
  31. O’Neill, M.A., Ishii, T., Albersheim, P., Darvill, A.G.: Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. — Ann. Rev. Plant Biol. 55: 109–139, 2004.CrossRefGoogle Scholar
  32. Oukarroum, A., Madidi, S.E., Schansker, G., Strasser, R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. — Environ. Exp. Bot. 60: 438–446, 2007.CrossRefGoogle Scholar
  33. Oxborough, K.: Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. — J. Exp. Bot. 55: 1195–1205, 2004.PubMedCrossRefGoogle Scholar
  34. Papadakis, I.E., Dimassi, K.N., Bosabalidis, A.M. et al.: Effects of B excess on some physiological and anatomical parameters of ‘Navelina’ orange plants grafted on two rootstocks. — Environ. Exp. Bot. 51: 247–257, 2004.CrossRefGoogle Scholar
  35. Paull, J.G., Cartwright, B., Rathjen, A.J.: Responses of wheat and barley genotypes to toxic concentrations of soil boron. — Euphytica 39: 137–144, 1988.CrossRefGoogle Scholar
  36. Redmann, R.E., Haraldson, J., Gusta, L.V.: Leakage of UVabsorbing substances as a measure of salt injury in leaf tissue of woody species. — Physiol. Plantarum 67: 87–91, 1986.CrossRefGoogle Scholar
  37. Reid, R.: Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. — Plant Cell Physiol. 48: 1673–1678, 2007.PubMedCrossRefGoogle Scholar
  38. Reid, R.J., Hayes, J.E., Post, A. et al.: A critical analysis of the causes of boron toxicity in plants. — Plant Cell Environ. 25: 1405–1414, 2004.CrossRefGoogle Scholar
  39. Schansker, G., Tóth, S.Z., Strasser, R.J.: Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. — BBABioenergetics 1706: 250–261, 2005.Google Scholar
  40. Schnurbusch, T., Hayes, J., Hrmova, M. et al.: Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. — Plant Physiol. 153: 1706–1715, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Shorrocks, V.M.: The occurrence and correction of boron deficiency. — Plant Soil 193: 121–148, 1997.CrossRefGoogle Scholar
  42. Sotiropoulos, T.E., Therios, I.N., Dimassi, K.N. et al.: Nutritional status, growth, CO2 assimilation, and leaf anatomical responses in two kiwifruit species under boron toxicity. — J. Plant Nutr. 25: 1249–1261, 2002.CrossRefGoogle Scholar
  43. Strasser, R.J., Srivastava, A., Tsimilli-Michael, M.: The fluorescence transient as a tool to characterise and screen photosynthetic samples. — In: Yunus, M., Pathre, U., Mohanty, P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445–483. Taylor and Francis, London 2000.Google Scholar
  44. Strasser, B.J., Strasser, R.J.: Measuring fast fluorescence transients to address environmental questions: the JIP test. — In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere, Vol. V. Pp. 977–980. Kluwer Academic Publisher, Dordrecht 1995.Google Scholar
  45. Strasser, R.J., Tsimilli-Michael, M., Srivastava, A.: Analysis of the chlorophyll a fluorescence transient. — In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll a Fluorescence: a Signature of Photosynthesis, Advances in Photosynthesis and Respiration Series. Pp. 321–362. Springer, Rotterdam 2004.CrossRefGoogle Scholar
  46. Strauss, A.J., Kruger, G.H.J., Strasser, R.J., Van Heerden, P.D.R.: Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. — Environ. Exp. Bot. 56: 147–157, 2006.CrossRefGoogle Scholar
  47. Sutton, T., Baumann, U., Hayes, J. et al.: Boron-toxicity tolerance in barley arising from efflux transporter amplification. — Science 318: 1446–1449, 2007.PubMedCrossRefGoogle Scholar
  48. Takano, J., Miwa, K., Yuan, L.X. et al.: Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. — P. Natl. Acad. Sci. USA 102: 12276–12281, 2005.CrossRefGoogle Scholar
  49. Thach, L.B., Shapcott, A., Schmidt, S., Critchley, E.: The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress responses. — Photosynth. Res. 94: 423–436, 2007.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2014

Authors and Affiliations

  • M. T. Öz
    • 1
  • Ö. Turan
    • 2
  • C. Kayihan
    • 3
  • F. Eyidoğan
    • 4
  • Y. Ekmekçi
    • 5
  • M. Yücel
    • 3
  • H. A. Öktem
    • 3
  1. 1.Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Molecular BiologyPalacký UniversityOlomoucCzech Republic
  2. 2.Espiye Vocational SchoolGiresun UniversityGiresunTurkey
  3. 3.Department of Biological SciencesMiddle East Technical UniversityAnkaraTurkey
  4. 4.Faculty of Education, Department of Elementary EducationBaşkent UniversityAnkaraTurkey
  5. 5.Faculty of Science, Department of BiologyHacettepe UniversityAnkaraTurkey

Personalised recommendations