, Volume 52, Issue 4, pp 574–580 | Cite as

Toxic effects of erythromycin on photosystem I and II in Microcystis aeruginosa

  • C. -N. Deng
  • D. -Y. Zhang
  • X. -L. Pan
Original Papers


Environmental pollution by antibiotics poses a potential ecological risk to aquatic photosynthetic organisms. In the present study, toxic effects of erythromycin on PSI and PSII were investigated in cyanobacteria culture medium of Microcystis aeruginosa. The activity and electron transport of both photosystems were affected by erythromycin in a concentrationdependent manner. The quantum yield of PSII (YII) was reduced at 0.1 mg L−1 of erythromycin, while the quantum yield of PSI (YI) significantly decreased at concentration of 5–25 mg L−1. The decline of YII was accompanied by an increase of nonregulated energy dissipation (YNO). At 10 mg L−1 of erythromycin, YII decreased by 55%, while YNO increased by 18%. The decrease of YI induced by erythromycin was caused by donor-side limitation of PSI (YND). YND was markedly enhanced with elevated erythromycin concentration. At 10 mg L−1 of erythromycin, YI and YNA (PSI acceptor-side limitation) decreased by 8 and 82%, respectively, while YND rose by 314%. The quantum yield of cyclic electron flow increased significantly at 0.1–1 mg L−1 of erythromycin; it decreased but remained higher than that of the control at 5–25 mg L−1 of erythromycin. The contribution of cyclic electron flow to YI, and to linear electron flow rose significantly with the increasing erythromycin concentration. The maximum values of electron transport rates in PSII and PSI decreased by 71 and 24.3%, respectively, at 25 mg L−1 of erythromycin. Compared with the untreated control, the light saturation of PSII and PSI decreased significantly with increasing erythromycin concentration. We showed that concentrations of erythromycin ≥ 5 mg L−1 could exert acute toxicity to cyanobacteria, whereas the chronic toxicity caused by concentrations of ng or μg L−1 needs further research.

Additional key words

chlorophyll fluorescence nonphotochemical quenching photoinhibition 



cyclic electron flow


electron transport rate


electron transport rate in PSI


electron transport rate in PSII


the maximum electron transport rate in PSI


the maximum electron transport rate in PSII


the light saturation of PSI


the light saturation of PSII


linear electron flow


nonphotochemical quenching


rapid light curves


the quantum yield of cyclic electron flow


the contribution of cyclic electron flow to YI


the ratio of the quantum yield of CEF to LEF


effective photochemical quantum yield of PSI


the effective photochemical quantum yield of PSII


the distribution of quantum yield between two photosystems


nonphotochemical energy dissipation due to acceptor-side limitation


nonphotochemical energy dissipation due to donor-side limitation


nonregulated energy dissipation


regulated energy dissipation


the initial slope of RLC of ETRI


the initial slope of RLC of ETRII


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alder, A.C., McArdell, C.S., Golet, E.M. et al.: Environmental exposure of antibiotics in Switzerland. — In: Kümmerer, K. (ed.): Pharmaceuticals in the Environment: Sources Fate, Effects and Risks. Pp. 63–64. Springer, Freiburg 2004.Google Scholar
  2. Aristilde, L., Melis, A., Sposito, G.: Inhibition of photosynthesis by a fluoroquinolone antibiotic. — Environ. Sci. Technol. 41: 1444–1450, 2010.CrossRefGoogle Scholar
  3. Belatik, A., Hotchandani, S., Tajmir-Riahi, H.A., et al.: Alteration of the structure and function of photosystem I by Pb2+. — J. Photoch. Photobio. B. 123: 41–47, 2013.CrossRefGoogle Scholar
  4. Chittum, H.S., Champney, W.S.: Erythromycin inhibits the assembly of the large ribosomal subunit in growing Escherichia coli cells. — Curr. Microbiol. 30: 273–279, 1995.PubMedCrossRefGoogle Scholar
  5. Fick, J., Söderström, H., Lindberg, R.H. et al.: Contamination of surface, ground, and drinking water from pharmaceutical production. — Environ. Toxicol. Chem. 28: 2522–2527, 2009.PubMedCrossRefGoogle Scholar
  6. Gao, S., Wang, G.: The enhancement of cyclic electron flow around photosystem I improves the recovery of severely desiccated Porphyra yezoensis (Bangiales, Rhodophyta). — J. Exp. Bot. 63: 4349–4358, 2012.PubMedCrossRefGoogle Scholar
  7. Gao, S., Shen, S.D., Wang, G.C. et al.: PSI-driven cyclic electron flow allows intertidal Macro-algae Ulva sp. (Chlorophyta) to survive in desiccated conditions. — Plant Cell Physiol. 52: 885–893, 2011.PubMedCrossRefGoogle Scholar
  8. González-Pleiter, M., Gonzalo, S., Rodea-Palomares, I. et al.: Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implication for environmental risk assessment. — Water Res. 47: 2050–2064, 2013.PubMedCrossRefGoogle Scholar
  9. Halling-Sørensen, B.: Algal toxicity of antibacterial agents used in intensive farming. — Chemosphere 40: 731–739, 2000.PubMedCrossRefGoogle Scholar
  10. Holten-Lützhøft, H.C., Halling-Sørensen, B., Jørgensen, S.E.: Algal toxicity of antibacterial agents applied in Danish fish farming. — Arch. Environ. Con. Tox. 36: 1–6, 1999.CrossRefGoogle Scholar
  11. Huang, W., Yang, S.J., Zhang, S.B. et al.: Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. — Planta 235: 819–828, 2012.PubMedCrossRefGoogle Scholar
  12. Huang, W., Zhang, S.B., Cao, K.F.: Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII. — Plant Cell Physiol. 51: 1922–1928, 2010.PubMedCrossRefGoogle Scholar
  13. Isidori, M., Lavorgna, M., Nardelli, A. et al.: Toxic and genotoxic evaluation of six antibiotics on non-target organisms. — Sci. Total Environ. 346: 87–98, 2005.PubMedCrossRefGoogle Scholar
  14. Jin, S.H., Wang, D., Zhu, F.Y. et al.: Up-regulation of cyclic electron flow and down regulation of linear electron flow in antisense-rca mutant rice. — Photosynthetica 46: 506–510, 2008.CrossRefGoogle Scholar
  15. Klughammer, C., Schreiber, U.: Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. — PAM Appl. Notes 1: 27–35, 2008.Google Scholar
  16. Kolpin, D.W., Furlong, E.T., Meyer, M.T. et al.: PharmaceuticalsF hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. — Environ. Sci. Technol. 36: 1202–1211, 2002.PubMedCrossRefGoogle Scholar
  17. Kramer, D.M., Johnson, G., Kiirats, O., Edwards, G.E.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. — Photosynth. Res. 79: 209–218, 2004.PubMedCrossRefGoogle Scholar
  18. Kudoh, H., Sonoike, K.: Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. — Planta 215: 541–548, 2002.PubMedCrossRefGoogle Scholar
  19. Kümmerer, K.: Antibiotics in the aquatic environment. A review. Part I. — Chemosphere 75: 417–434, 2009a.PubMedCrossRefGoogle Scholar
  20. Kümmerer, K.: Antibiotics in the aquatic environment. A review. Part II. — Chemosphere 75: 435–441, 2009b.PubMedCrossRefGoogle Scholar
  21. Li, X.G., Xu, P.L., Zhao, J.P. et al.: Ferredoxin-quinone reductase benefits cyclic electron flow around photosystem I in tobacco leaves upon exposure to chilling stress under low irradiance. — Photosynthetica 44: 349–354, 2006.CrossRefGoogle Scholar
  22. Lin, A.Y.C., Tsai, Y.T.: Occurrence of pharmaceuticals in Taiwan’s surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. — Sci. Total Environ. 407: 3793–3802, 2009.PubMedCrossRefGoogle Scholar
  23. Liu, B.Y., Nie, X.P., Liu, W.Q. et al.: Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum. — Ecotox. Environ. Safe. 74: 1027–1035, 2011.CrossRefGoogle Scholar
  24. Lu, K.X., Yang, Y., He, Y., Jiang, D.A.: Induction of cyclic electron flow around photosystem I and state transition are correlated with salt tolerance in soybean. — Photosynthetica 46: 10–16, 2008.CrossRefGoogle Scholar
  25. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.PubMedCrossRefGoogle Scholar
  26. Miyake, C., Horiguchi, S., Makino, A. et al.: Effects of light intensity on cyclic electron flow around PSI and its relationship to non-photochemical quenching of Chl fluorescence in tobacco leaves. — Plant Cell Physiol. 46: 1819–1830, 2005.PubMedCrossRefGoogle Scholar
  27. Munekage, Y., Hojo, M., Meurer, J. et al.: PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. — Cell 110: 361–371, 2002.PubMedCrossRefGoogle Scholar
  28. Nie, X.P., Liu, B.Y., Yu, H.J. et al.: Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. — Environ. Pollut. 172: 23–32, 2013.PubMedCrossRefGoogle Scholar
  29. Pan, X.L., Deng, C.N., Zhang, D.Y. et al.: Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests. — Aquat. Toxicol. 89: 207–213, 2008.PubMedCrossRefGoogle Scholar
  30. Pan, X.L., Zhang, D.Y., Chen, X. et al.: Effects of levofloxacin hydrochlordie on photosystem II activity and heterogeneity of Synechocystis sp. — Chemosphere 77: 413–418, 2009.PubMedCrossRefGoogle Scholar
  31. Park, S.J., Choi, K.H.: Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. — Ecotoxicology 17: 526–538, 2008.PubMedCrossRefGoogle Scholar
  32. Pestka, S.: Insights into protein biosynthesis and ribosome function through inhibitiors. — Prog. Nucleic Acid Res. Mol. Biol. 17: 217–245, 1976.PubMedCrossRefGoogle Scholar
  33. Pfündel, E., Klughammer, C., Schreiber, U.: Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. — PAM Appl. Notes 1: 21–24, 2008.Google Scholar
  34. Pinckney, J.L., Hagenbuch, I.M., Long, R.A., Lovell, C.R.: Sublethal effects of the antibiotic tylosin on estuarine benthic microalgal communities. — Mar. Pollut. Bull. 68: 8–12, 2013.PubMedCrossRefGoogle Scholar
  35. Platt, T., Gallegos, C.L., Harrison, W.G.: Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. — J. Mar. Res. 38: 687–701, 1980.Google Scholar
  36. Richardson, B.J., Lam, P.K.S., Martin, M.: Emerging chemicals of concern: pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China. — Mar. Pollut. Bull. 50: 913–920, 2005.PubMedCrossRefGoogle Scholar
  37. Santos, L.H., Araújo, A.N., Fachini, A., et al.: Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. — J. Hazard. Mater. 175: 45–95, 2010.PubMedCrossRefGoogle Scholar
  38. Sarmah, A.K., Meyer, M.T., Boxall, A.B.A.: A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. — Chemosphere 65: 725–759, 2006.PubMedCrossRefGoogle Scholar
  39. Saroussi, S., Beer, S.: Alpha and quantum yield of aquatic plants derived from PAM fluorometry: Uses and misuses. — Aquat. Bot. 86: 89–92, 2007.CrossRefGoogle Scholar
  40. Schreiber, U., Muller, J.F., Haugg, A., Gademann, R.: New type of dual-channel PAM chlorophyll fluorometer for highly sensitive water toxicity biotests. — Photosynth. Res. 74: 317–330, 2002.PubMedCrossRefGoogle Scholar
  41. Scribner, E.A., Dietze, J.E., Meyer, M.T., Kolpin, D.W.: Occurrence of antibiotics in water from fish hatcheries [abs.]. — In: 21st Annual Water and Future of Kansas Conference. Pp. 68. Water Resources Research Institute, New York 2004.Google Scholar
  42. Singh, R., Dubey, G., Singh, V.P. et al.: High light intensity augments mercury toxicity in cyanobacterium Nostoc muscorum. — Biol. Trace Elem. Res. 149: 262–272, 2012.PubMedCrossRefGoogle Scholar
  43. Stanier, R.Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G.: Purification and properties of unicellular blue-green algae (order Chroococcales). — Bacteriol. Rev. 35: 171–205, 1971.PubMedCentralPubMedGoogle Scholar
  44. Stoichev, T., Baptista, M.S., Basto, M.C.P. et al.: Effects of minocycline and its degradation products on the growth of Microcystis aeruginosa. — Ecotox. Environ. Safe. 74: 219–224, 2011.CrossRefGoogle Scholar
  45. Strasser, B.J.: Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. — Photosynth. Res. 52: 147–155, 1997.CrossRefGoogle Scholar
  46. Suzuki, K., Ohmori, Y., Ratel, E.: High root temperature blocks both linear and cyclic electron transport in the dark during chilling of the leaves of rice seedlings. — Plant Cell Physiol. 52: 1697–1707, 2011.PubMedCrossRefGoogle Scholar
  47. Takahashi, S., Milward, S.E., Fan, D.Y. et al.: How does cyclic electron flow alleviate photoinhibition in Arabidopsis? — Plant Physiol. 149: 1560–1567, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Wang, S.Z., Chen, F.L., Mu, S.Y. et al.: Simutaneous analysis of photosystem responses of Microcystis aeruginoga under chromium stress. — Ecotox. Environ. Safe. 88: 163–168, 2013.CrossRefGoogle Scholar
  49. Wang, S.Z., Zhang, D.Y., Pan, X.L.: Effects of arsenic on growth and photosystem II (PSII) activity of Microcystis aeruginosa. — Ecotox. Environ. Safe. 84: 104–111, 2012.CrossRefGoogle Scholar
  50. White, S., Anandraj, A., Bux, F.: PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. — Bioresource Technol. 102: 1675–1682, 2011.CrossRefGoogle Scholar
  51. Wise, R.: Antimicrobial resistance: priorities for action. — J. Antimicrob. Chemoth. 49: 585–586, 2002.CrossRefGoogle Scholar
  52. Wodala, B., Eitel, G., Gyula, T.N. et al.: Monitoring moderate Cu and Cd toxicity by chlorophyll fluorescence and P700 absorbance in pea leaves. — Photosynthetica 50: 380–386, 2012.CrossRefGoogle Scholar
  53. Yang, W.W., Tang, Z.P., Zhou, F.Q. et al.: Toxicity studies of tetracycline on Microcystis aeruginosa and Selenasrum capricornutum. — Environ.Toxicol. Phar. 35: 320–324, 2013.CrossRefGoogle Scholar
  54. Zuccato, E., Calamari, D., Natangelo, M., Fanelli, R..: Presence of therapeutic drugs in the environment. — Lancet 355: 1789–1790, 2000.PubMedCrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2014

Authors and Affiliations

  1. 1.Key Lab of Plateau Lake Ecology & Global Change, College of Tourism and Geographic ScienceYunnan Normal UniversityKunmingChina
  2. 2.State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
  3. 3.State Key Laboratory of Environmental Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina

Personalised recommendations