Advertisement

Photosynthetica

, Volume 52, Issue 4, pp 538–547 | Cite as

Changes in photosynthesis, pigment composition and glutathione contents in two Antarctic lichens during a light stress and recovery

  • K. Balarinová
  • M. Barták
  • J. Hazdrová
  • J. Hájek
  • J. Jílková
Original Papers

Abstract

Over last decades, several studies have been focused on short-term high light stress in lichens under laboratory conditions. Such studies reported a strong photoinhibition of photosynthesis accompanied by a partial photodestruction of PSII, involvement of photoprotective mechanisms, and resynthetic processes into gradual recovery. In our paper, we applied medium [800 μmol(photon) m−2 s−1] light stress to induce negative changes in PSII funcioning as well as pigment and glutathione (GSH) content in two Antarctic fruticose lichen species. Chlorophyll (Chl) fluorescence parameters, such as potential and effective quantum yield of photosynthetic processes and fast transients (OJIP) recorded during high light exposition and recovery, revealed that Usnea antarctica was less susceptible to photoinhibition than U. aurantiaco-atra. This might be supported by a more pronounced high light-induced reduction in Chl a and b contents in U. aurantiaco-atra compared with U. antarctica. In both experimental species, total GSH showed an initial increase during the first 30–40 min of high light treatment followed by a decrease (60 min) and an increase during dark recovery. Full GSH recovery, however, was not finished in U. aurantiaco-atra even after 5 h indicating lower capacity of photoprotective mechanisms in the species. OJIP curves showed high light-induced decrease in both species, however, the recovery of the OJIPs shape to pre-photoinhibitory values was faster and more apparent in U. antarctica than in U. aurantiaco-atra. The results are discussed in terms of sensitivity of the two species to photoinhibition and their photosynthetic performance in natural environment.

Additional key words

carotenoids chlorophyll fluorescence performance index thallus 

Abbreviations

ABS/RC

absorption of light energy per reaction centre

DM

dry mass

ETo/RC

photosynthetic electron transport rate per reaction centre

Chl

chlorophyll

Fv/Fm

potential quantum yield of PSII

GSH

glutathione

GSSG

glutathione, oxidized form

OJIP

fast chlorophyll fluorescence transients

PI Abs

performance index

ROS

reactive oxygen species

TRo/RC

trapping rate per reaction centre

ΦPSII

effective quantum yield of PSII

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barták, M.: Lichen photosynthesis. Scaling from the cellular to the organism level. — In: Hohmann-Marriott, M. (ed.): The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration. Pp. 379–400. Springer, Dordrecht 2014.CrossRefGoogle Scholar
  2. Barták, M., Solhaug, K.-A., Vráblíková, H., Gauslaa, Y.: Curling during desiccation protects the foliose lichen Lobaria pulmonaria against photoinhibition. — Oecologia 149: 553–560, 2006.PubMedCrossRefGoogle Scholar
  3. Barták, M., Hájek, J., Očenášová, P.: Photoinhibition of photosynthesis in Antarctic lichen Usnea antarctica. I. Light intensity- and light duration-dependent changes in functioning of photosystem II. — Czech Polar Reports 2: 42–51, 2011.CrossRefGoogle Scholar
  4. Barták, M., Hájek, J., Vráblíková, H. et al.: High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione. — Plant Biol. 6: 333–341, 2004.PubMedCrossRefGoogle Scholar
  5. Barták, M., Vráblíková, H., Hájek, J.: Sensitivity of photosystem 2 of Antarctic lichens to high irradiance stress: Fluorometric study of fruticose (Usnea antarctica) and foliose (Umbilicaria decussata) species. — Photosynthetica 41: 497–504 2003.CrossRefGoogle Scholar
  6. Barták, M., Vráblíková-Cempírková, H., Štepigová, J. et al.: Duration of irradiation rather than quantity and frequency of high irradiance inhibits photosynthetic processes in the lichen Lasallia pustulata. — Photosynthetica 46: 161–169, 2008.CrossRefGoogle Scholar
  7. Bilger, W., Rimke, S., Schreiber, U. et al.: Inhibition of energytransfer to photosystem II in lichens by dehydration. — J. Plant Physiol. 134: 261–268, 1989.CrossRefGoogle Scholar
  8. Bjerke, J.W., Joly, D., Nilsen, L. et al.: Spatial trends in usnic acid concentrations of the lichen Flavocetraria nivalis along local climatic gradients in the Arctic (Kongsfjorden, Svalbard). — Polar Biol. 27: 409–417, 2004.CrossRefGoogle Scholar
  9. Bohuslavová, O.: Ecology of lichens on deglaciated parts of James Ross Island, the Antarctic. Ph.D. Thesis. Pp. 1–73. Masaryk University, Brno 2012.Google Scholar
  10. Burrit, D.J., MacKenzie, S.: Antioxidant metabolism during acclimation of Begonia × erythrophylla to high light levels. — Ann. Bot. 91: 783–794, 2003.CrossRefGoogle Scholar
  11. Carreras, H.A., Wannaz, E.D., Perez, C.A. et al.: The role of urban air pollutants on the performance of heavy metal accumulation in Usnea amblyoclada. — Environ. Pollut. 97: 50–57, 2005.Google Scholar
  12. Colville, L., Kranner, I.: Desiccation tolerant plants as model systems to study redox regulation of protein thiols. — Plant Growth Regul. 62: 241–255, 2010.CrossRefGoogle Scholar
  13. Davies, B.J., Glasser, N.F., Carrivick, J.L. et al.: Landscape evolution and ice-sheet behaviour in a semi-arid polar environment: James Ross Island, NE Antarctic Peninsula. — In: Hambrey, M.H., Barker, P.F., Barrett, P.J. et al. (ed.): Antarctic Palaeoenvironments and Earth-Surface Processes. Pp. 353–395. Geological Society, London 2013.Google Scholar
  14. Del Hoyo, A., Álvarez, R., Del Campo, E.M. et al.: Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. — Ann. Bot. 107: 109–118, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Demmig-Adams, B., Maguas, C., Adams, W.W. et al.: Effect of high light on the efficiency of photochemical energyconversion in a variety of lichen species with green and bluegreen phycobionts. — Planta 180: 400–409, 1990.PubMedCrossRefGoogle Scholar
  16. Hauck, M., Dulamsuren, C., Mühlenberg, M.: Lichen diversity on steppe slopes in the northern Mongolian mountain taiga and its dependence on microclimate. — Flora 202: 530–546, 2007.CrossRefGoogle Scholar
  17. Heber, U., Azarkovich, M., Shuvalov, V.: Activation of mechanisms of photoprotection by desiccation and by light: poikilohydric photoautotrophs. — J. Exp. Bot. 58: 2745–2759, 2007.PubMedCrossRefGoogle Scholar
  18. Holm, G.: Chlorophyll mutations in barley. — Acta Agr. Scand. 4: 457–471, 1954.Google Scholar
  19. Huneck, S.: Progress in the chemistry of lichen substances, 2000–2005. — J. Hattori Bot. Lab. 100: 671–694, 2006.Google Scholar
  20. Kappen L., Breuer M., Bölter M.: Ecological and physiological investigations in continental antarctic cryptogams. 3. Photosynthetic production of Usnea sphacelata: diurnal courses, models, and the effect of photoinhibition. — Polar Biol. 11: 393–402, 1991.CrossRefGoogle Scholar
  21. Košler, J., Magna, T., Mlčoch, B. et al.: Combined Sr, Nd, Pb, and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. — Chem. Geol. 258: 207–218, 2009.CrossRefGoogle Scholar
  22. Krábková, G.: [Content of UV-absorbing compounds and pigments in extracts from lichens from different Earth regions.] Pp. 1–67. Diploma Thesis. Masaryk University, Brno 2013. [In Czech]Google Scholar
  23. Kranner, I.: Determination of glutathione, glutathione disulphide and two related enzymes, glutathione reductase and glucose-6-phosphate dehydrogenase, in fungal and plant cells. — In: Varma, A. (ed.): Mycorrhiza Manual. Pp. 227–241. Springer, Berlin 1998.CrossRefGoogle Scholar
  24. Kranner, I.: Glutathione status correlates with different degrees of desiccation tolerance in three lichens. — New Phytol. 154: 451–460, 2002.CrossRefGoogle Scholar
  25. Kranner, I., Birtić, S.: A modulating role for antioxidants in desiccation tolerance. — Integr. Comp. Biol. 45: 734–740, 2005.PubMedCrossRefGoogle Scholar
  26. Kranner, I., Cram, W.J., Zorn, M. et al.: Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. — P. Natl. Acad. Sci. USA 102: 3141–3146, 2005.CrossRefGoogle Scholar
  27. Láska, K., Barták, M., Hájek, J. et al.: Climatic and ecological characteristics of deglaciated area of James Ross Island, Antarctica, with a special respect to vegetation cover. — Czech Polar Reports 1: 49–62, 2011.CrossRefGoogle Scholar
  28. Manrique, E., Balaguer, L., Barnes, J. et al.: Photoinhibition studies in lichens using chlorophyll fluorescence analysis. — Bryologist 96: 443–449, 1993.CrossRefGoogle Scholar
  29. May, M.J., Vernoux, T., Leaver, C. et al.: Glutathione homeostasis in plants: implications for environmental sensing and plant development. — J. Exp. Bot. 49: 649–667, 1998.Google Scholar
  30. Mrak, T., Jeran, Z., Batič, F. et al.: Arsenic accumulation and thiol status in lichens exposed to As(V) in controlled conditions. — Biometals 23: 207–219, 2010.PubMedCrossRefGoogle Scholar
  31. Müller, M., Zechmann, B., Zellnig, G.: Ultrastructural localization of glutathione in Cucurbita pepo plants. — Protoplasma 223: 213–219, 2004.PubMedCrossRefGoogle Scholar
  32. Noctor, G., Foyer, C.H.: Ascorbate and glutathione: Keeping active oxygen under control. — Annu. Rev. Plant Phys. 49: 249–279, 1998.CrossRefGoogle Scholar
  33. Noctor, G., Gomez, L., Vanacker, H. et al.: Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. — J. Exp. Bot. 53: 1283–1304, 2002.PubMedCrossRefGoogle Scholar
  34. Onofri, S., Fenice, M., Cicalini, A.R. et al.: Ecology and biology of microfungi from Antarctic rocks and soils. — Ital. J. Zool. 67: 163–167, 2000.CrossRefGoogle Scholar
  35. Palmqvist, K., Dahlman, L., Valladares, F. et al.: CO2 exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones. — Oecologia 133: 295–306, 2002.CrossRefGoogle Scholar
  36. Rausch, T., Wachter, A.: Sulfur metabolism: a versatile platform for launching defence operations. — Trends Plant Sci. 10: 503–509, 2005.PubMedCrossRefGoogle Scholar
  37. Riddell, J., Padgett, P.E., Nash III, T.H.: Physiological responses of lichens to factorial fumigations with nitric acid and ozone. — Environ. Pollut. 170: 202–210, 2012.PubMedCrossRefGoogle Scholar
  38. Rikkinen, J.: What’s Behind the Pretty Colours. A Study on the Photobiology of Lichens. Edition 4: Bryobrothera. Pp. 239, The Finnish Bryological Society, Helsinki 1995.Google Scholar
  39. Singh, J., Dubey, A.K., Singh, R.P.: Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations. — Rev. Environ. Sci. Biotechnol. 10: 63–77, 2011.CrossRefGoogle Scholar
  40. Singh, R., Ranjan, S., Nayaka, S. et al.: Functional characteristics of a fruticose type of lichen, Stereocaulon foliolosum Nyl., in response to light and water stress. — Acta Physiol. Plant. 35: 1605–1615, 2013.CrossRefGoogle Scholar
  41. Smellie, J.L., Johnson, J.S., McIntosh, W.C. et al.: Six million years of glacial history recorded in volcanic lithofacies of the James Ross Island Volcanic Group, Antarctic Peninsula. — Palaeogeogr. Palaeoclimatol. Palaeoecol. 260: 122–148, 2008.CrossRefGoogle Scholar
  42. Štepigová, J., Vráblíková, H., Lang, J. et al.: Glutathione and zeaxanthin formation during high light stress in foliose lichens. — Plant Soil Environ. 53: 340–344, 2007.Google Scholar
  43. Stirbet, A.: Excitonic connectivity between photosystem II units: what is it, and how to measure it? — Photosynth. Res. 116: 189–214, 2013.PubMedCrossRefGoogle Scholar
  44. Strasser, R.J., Shrivastava, A., Tsimilli-Michael, M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. — In: Yunus, M., Pathre, U., Mohanty, P. (ed): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445–483. Taylor and Francis, London 2000.Google Scholar
  45. Szalai, G., Kellös, T., Galiba, G. et al.: Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. — Plant Growth Regul. 28: 66–80, 2009.CrossRefGoogle Scholar
  46. Tausz, M.: The role of glutathione in plant response and adaptation to natural stress. — In: Grill, D., Tausz, M., De Kok, L.J.: Significance of Glutathione to Plant Adaptation to the Environment. Pp. 101–122. Springer, Dordrecht 2001.CrossRefGoogle Scholar
  47. Terauds, A., Chown, S.L., Morgan, F. et al.: Conservation biogeography of the Antarctic. — Diversity Distrib. 18: 726–741, 2012.CrossRefGoogle Scholar
  48. Tretiach, M., Baruffo, L., Piccotto, M.: Effects of Mediterranean summer conditions on chlorophyll a fluorescence emission in the epiphytic lichen Flavoparmelia soredians: a field study. — Plant Biosyst. 146: 171–180, 2012.CrossRefGoogle Scholar
  49. Veerman, J., Vasil’ev, S., Paton, G.D. et al.: Photoprotection in the lichen Parmelia sulcata: The origins of desiccation-induced fluorescence quenching. — Plant Physiol. 145: 997–1005, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Vráblíková, H., Barták, M., Wönisch, A.: Changes in glutathione and xanthophyll cycle pigments in the high light-stressed lichens Umbilicaria antarctica and Lassalia pustulata. — J. Photoch. Photobiol. B 79: 35–41, 2005.CrossRefGoogle Scholar
  51. Wendler, J., Holzwarth, A.R.: State transitions in the green alga Scenedesmus obliquus probed by time-resolved chlorophyll fluorescence spectroscopy and global data analysis. — Biophys. J. 52: 717–728, 1987.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2014

Authors and Affiliations

  • K. Balarinová
    • 1
  • M. Barták
    • 1
  • J. Hazdrová
    • 1
  • J. Hájek
    • 1
  • J. Jílková
    • 1
  1. 1.Faculty of Science, Department of Experimental Biology, Laboratory of Photosynthetic ProcessesMasaryk UniversityBrnoCzech Republic

Personalised recommendations